Math, asked by waseemkayani1071, 11 months ago

A vertical pole is 7√3 high and the length of its shadow is 21m. Find the angle of elevation of the source of light.

Answers

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Angle\:of\:elevation=30\degree}}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given:}} \\  \tt: \implies Height\: of \: pole = 7\sqrt{3} \: m \\  \\  \tt:   \implies Shadow \: of \: pole = 21 \: m \\ \\ \red{\underline \bold{To \: Find:}} \\  \tt:  \implies Angle \: of \: elevation = ?

• According to given question :

 \circ \:  \tt{Let \: angle \: of \: elevation \: of \:  \: pole \: be\:  \alpha } \\  \\  \bold{As \: we \: know \: that} \\  \tt:  \implies tan \:  \alpha =  \frac{Perpendicular}{Base}  \\  \\  \tt:  \implies tan \:  \alpha =  \frac{7\sqrt{3}}{21}  \\  \\ \tt:  \implies tan \:  \alpha = \frac{\sqrt{3}}{3}

\tt:  \implies tan \:  \alpha  =  \frac{ \sqrt{3} }{ \sqrt{3} \times  \sqrt{3}  }  \\  \\  \tt:  \implies tan \:  \alpha  =  \frac{1}{ \sqrt{3} }  \\  \\  \tt:  \implies  \alpha  =  {tan}^{ - 1} ( \frac{1}{ \sqrt{3} } ) \\  \\  \tt \circ \: tan \: 30 \degree =  \frac{1}{ \sqrt{3} }  \\  \\    \green{\tt:  \implies  \alpha  = 30 \degree} \\  \\   \green{\tt \therefore Angle \: of \: elevation \: of \: pole \: to \: ground \: is \: 30 \degree}

Answered by Anonymous
11

Step-by-step explanation:

HEY THERE!!! (Lovely Brother )

☔☔☔☔☔☔☔☔☔☔☔☔☔☔

\huge{\bold{SOLUTION:-}}SOLUTION:−

☔ Let AB be the pole and AC be it's Shadow.

☔ Let ∠ACB =\thetaθ

Then, AB measure = 7√3 metres

☔ And , AC = 21 metres

☔Using Trigonometry Ratio!!

➡Here, Perpendicular and Base Given, So we must be user Tangent!!

➡ tan = Perpendicular/Base

tan = 7√3/21

➡√3/3

Now, Rationalizing it!

</p><p>\begin{lgathered}\sf{ \frac{ \sqrt{3} }{3} \times \frac{ \sqrt{3} }{ \sqrt{3} } } \\ \\ \\ \implies \: \frac{3}{3 \sqrt{3} } \\ \\ \\ \implies \: \frac{ \cancel3}{ \cancel3 \sqrt{3} } \\ \\ \implies \: \frac{1}{ \sqrt{3} }\end{lgathered}.

☔ Here, tan = 1/√3

➡ tan ∅ = 30°

☔ Hence, 30°, it is angle of elevation of the source of light.

☔ ✍✍✍✍✍

Similar questions