Math, asked by rajhansh, 1 year ago

A vertical tower OP stands at the centre O of a square ABCD. Let 'h' and 'b' denote the length OP and AB respectively. suppose (angle APB=60' then the relationship between 'h and 'b' can be expressed as:(a)2b² =h² (b)2h²=b² (c)3b²=2h² (d)3h²=2b²

Answers

Answered by kvnmurty
16
the triangle APB is an equilateral triangle.  Because  APB is 60 deg.  ABP and PAB are 60 deg each, because  AP = BP and  hence ABP and PAB are both equal.

Now AOP is a right angle triangle.  AO = b / root(2)
     OP = h                AP = b, and  is the hypotenuse
    
   b² = h² + b²/2    =>     2 h² = b²


kvnmurty: click on thank you link and select best answer
Answered by Anonymous
1

Answer:

Given−

ABCDisasquarewhosecentralpointisO.

OP⊥BO&∠APB=60  

o

.AB=b&OP=h.

Tofindout−

Therelationbetweenb&h.

Solution−

OisthecentralpointofthesquareABCD.

∴OB=  

2

1

​  

×diagonal=  

2

2

​  

b

​  

=  

2

​  

 

b

​  

.........(i)

NowOisthecentralpointofthesquareABCD.

∴PA=PBi.e∠ABP=∠BAP.........(ii)

Again∠APB=60  

o

.

∴∠ABP+∠BAP=180  

o

−60  

o

(byanglesumpropertyoftriangles)

∴⟹∠ABP+∠BAP=120  

o

 

∴∠ABP=∠BAP=60  

o

.(fromii)

SoΔPABisanequilateralone.

∴PB=AB=b.....(iii)

ConsideringΔPOBwehave∠O=90  

o

,OB=  

2

​  

 

b

​  

(fromi)

andPB=b(fromiii)

∴ApplyingPythagorastheorem

OP  

2

+OB  

2

=PB  

2

 

⟹h  

2

+(  

2

​  

 

b

​  

)  

2

=b  

2

 

⟹2h  

2

=b  

2

 

Ans−OptionB

Step-by-step explanation:

Attachments:
Similar questions