Math, asked by emma567, 1 year ago

A vertical tower PQ subtends equal angle of 30° at each of the two places A and B, 60 meter apart on the ground. If AB subtends an angle of 60° at P(the foot of the tower) then the height of the tower is
(A) 20\sqrt{3} meter
(B) 20 meter
(C) 60 \sqrt{3} meter
(D) 60 meter
Kindly answer with explanation.

Answers

Answered by lublana
4

The height of tower=20\sqrt 3m

Step-by-step explanation:

Let h be the height of tower.

PQ=h

In triangle PQA

tan\theta=\frac{Perpendicular\;side}{base}

tan 30=\frac{QP}{AP}

\frac{1}{\sqrt 3}=\frac{h}{AP}

AP=h\sqrt 3

AP=BP=h\sqrt 3

Cosine law: c^2=a^2+b^2-2abcos\theta

\theta=60^{\circ},a=AP,b=BP,c=60 m

Substitute the values then we get

(60)^2=(AP)^2+(BP)^2-2AP\cdot BPcos 60^{\circ}

3600=(h\sqrt 3)^2+(h\sqrt 3)^2-2(h\sqrt3)(h\sqrt3 )\times \frac{1}{2}

3600=3h^2+3h^2-6h^2\times \frac{1}{2}

3600=6h^2-3h^2

3h^2=3600

h^2=1200

h=\sqrt{1200}=20\sqrt 3

Hence, the height of tower=20\sqrt 3m

#Learns more:

https://brainly.in/question/2083004

Attachments:
Similar questions