Math, asked by rishavsharma73012, 5 months ago

A vertical tower stands on a horizontal plane and is
surmounted by a vertical flag staff of height h. At a
point on the plane the angle of elevation of the bottom
of the flag staff of a and that of the top of the flag staff
is ß. Then the height of the tower is
(1) \: h \: tan \alpha
(2) \frac{htan \alpha }{tan \beta  - tan \alpha }
(3) \:  \frac{h \: tan \alpha }{h \: tan \alpha  - h \: tan \beta }
(4) \: none \: of \: these






Answers

Answered by Anonymous
0

ANSWER

Let height be y ΔOAC

Let height be y ΔOACtanθ=BP

Let height be y ΔOACtanθ=BPtanβ=OACA

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BC

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ x

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOAB

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicular

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαy

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+h

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+hytanβ=tanαy+tanαh

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+hytanβ=tanαy+tanαhytanβ−tany=tanαh

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+hytanβ=tanαy+tanαhytanβ−tany=tanαhy(tanβ−tanα)=tanαh

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+hytanβ=tanαy+tanαhytanβ−tany=tanαhy(tanβ−tanα)=tanαhy=tanβ−tanαhtanα

Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h            (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+hytanβ=tanαy+tanαhytanβ−tany=tanαhy(tanβ−tanα)=tanαhy=tanβ−tanαhtanαThis proved.

Answered by prankulpunj
0

(2) is correct option

Similar questions