A vertical tower stands on a horizontal plane and is
surmounted by a vertical flag staff of height h. At a
point on the plane the angle of elevation of the bottom
of the flag staff of a and that of the top of the flag staff
is ß. Then the height of the tower is
Answers
ANSWER
Let height be y ΔOAC
Let height be y ΔOACtanθ=BP
Let height be y ΔOACtanθ=BPtanβ=OACA
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BC
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ x
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOAB
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicular
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαy
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+h
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+hytanβ=tanαy+tanαh
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+hytanβ=tanαy+tanαhytanβ−tany=tanαh
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+hytanβ=tanαy+tanαhytanβ−tany=tanαhy(tanβ−tanα)=tanαh
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+hytanβ=tanαy+tanαhytanβ−tany=tanαhy(tanβ−tanα)=tanαhy=tanβ−tanαhtanα
Let height be y ΔOACtanθ=BPtanβ=OACAtanβ=xy+h (y+h)→ Let AB, AB+BCLet OA→ xx=[tanβy+x]Consider ΔOABtanα=xy=Baseperpendicularx=tanαytanαy=tanβy+hytanβ=tanαy+tanαhytanβ−tany=tanαhy(tanβ−tanα)=tanαhy=tanβ−tanαhtanαThis proved.
(2) is correct option