Math, asked by SharmaShivam, 1 year ago

A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height 'h'as shown in the figure. At a point on a plane, the angle of elevation of bottom of the flagstaff is \alpha and that of the top of flagstaff is \beta. Prove that the height of the tower is \frac{h.tan\alpha}{tan\beta-tan\alpha}.

Attachments:

Answers

Answered by SillySam
35

 \bf{ \underline { \red{step \: 1 -  \:}take \: out \: tan \:  \alpha }}


  \bf{\tan( \alpha ) =  \frac{bc}{ab} }


 \bf{ \tan( \alpha )  =  \frac{x}{ab} }


 \bf{ab =  \frac{x}{tan \:  \alpha } -  - (1) }

 \bf{ \underline{ \green{step \: 2 - }take \: out \: tan \:  \beta }}


 \bf{ \tan( \beta ) =  \frac{db}{ab}  }


 \bf{ \tan( \beta ) =  \frac{h + x}{ab}  }


 \bf{tan \:  \beta  =  \frac{h + x}{ \frac{x}{tan \:  \alpha } } \:  \: (from \: equation \: 1) }


 \bf{tan \:  \beta  =  \frac{(h + x)tan \:  \alpha }{x} }




 \bf{ \: x \: tan  \beta  = h \: tan \: \alpha  + x \:  \tan( \alpha )  }



 \bf{x \: tan  \beta   - x \: tan \:  \alpha  = h \: tan \alpha }

 \bf{ \underline{ \blue{step \: 3 - }take \: x \: common}}


 \bf{x( tan \: \beta -  tan \alpha) = h \: tan \:  \alpha }


 \bf{ \underline{ \pink{step \: 4 - }keep \: x \: on \: a \: side   }}


 \bf{x =  \frac{h \: tan \:  \alpha }{tan \:  \beta  - tan \:  \alpha } }


Since, x= height of tower, so

 \bf{height \: of \: tower \:  =  \frac{h \: tan \:  \alpha }{tan \:  \beta  - tan \:  \alpha } }


Hence Proved
Answered by Grimmjow
52

\sf{\bigstar\;\;We\;know\;that : \boxed{\sf{Tangent\;of\;Triangle = \dfrac{Opposite\;Side}{Adjacent\;Side}}}}


\textsf{Consider Triangle ACB in the given Figure :}


✿  \textsf{In Triangle ACB : The Opposite Side is BC}


✿  \textsf{In Triangle ACB : The Adjacent Side is AB}


\implies \sf{Tangent\;of\;Triangle\;ACB = \dfrac{BC}{AB}}


\textsf{Given : Angle of Elevation of bottom of the Flagstaff\;(Top of Tower) = $\alpha$}


\textsf{Given : The Height of the Tower (BC) = x}


\sf{\implies Tan\alpha = \dfrac{x}{AB}}


\sf{\implies AB = \dfrac{x}{Tan\alpha}}


\textsf{Now, Consider Triangle ADB in the given Figure :}


✿  \textsf{In Triangle ADB : The Opposite Side is DB}


✿  \textsf{In Triangle ADB : The Adjacent Side is AB}


\implies \sf{Tangent\;of\;Triangle\;ADB = \dfrac{DB}{AB}}


\textsf{Given : Angle of Elevation of Top of the Flagstaff = $\beta$}


\textsf{From the Figure, We can Notice that : DB = DC + CB}


\textsf{Given : The Height of the Flagstaff (DC) = h}


\sf{\implies DB = h + x}


\sf{\implies Tan\beta = \dfrac{h + x}{AB}}


\sf{\implies AB = \dfrac{h + x}{Tan\beta}}


\textsf{As, In both Triangles ADB and ACB, Length of Side AB is Same and Equal : }


\implies \textsf{We can equate both the Lengths of Side AB}


\sf{\implies \dfrac{x}{Tan\alpha} = \dfrac{h + x}{Tan\beta}}


\sf{\implies \dfrac{Tan\beta}{Tan\alpha} = \dfrac{h + x}{x}}


\sf{\implies \dfrac{Tan\beta}{Tan\alpha} = \dfrac{h}{x} + 1}


\sf{\implies \dfrac{h}{x} = \bigg(\dfrac{Tan\beta}{Tan\alpha} - 1\bigg)}


\sf{\implies \dfrac{h}{x} = \bigg(\dfrac{Tan\beta - Tan\alpha}{Tan\alpha}\bigg)}


\sf{\implies \dfrac{x}{h} = \bigg(\dfrac{Tan\alpha}{Tan\beta - Tan\alpha}\bigg)}


\sf{\implies {x} = \bigg(\dfrac{h.Tan\alpha}{Tan\beta - Tan\alpha}\bigg)}


\sf{\implies Height\;of\;the\;Tower = \bigg(\dfrac{h.Tan\alpha}{Tan\beta - Tan\alpha}\bigg)}

Similar questions