Math, asked by vinaysharma6856, 8 months ago

A vertical tower stands on the ground and is surmounted by a flag staff of height 5m from a point on the ground,the angle of elevation of the bottom of the flag is 45 and the top of the flag staff is 60.Find the height of the tower.answer fast I will mark brainliest

Answers

Answered by Tomboyish44
10

Given:

A vertical tower (AB)

AB is surmounted by a flagstaff of height 5m. (AD)

Angle of elevation of the bottom of the flagstaff is 45° (∠DCB)

Angle of elevation of the top of the flagstaff is 60° (∠ACB)

In ΔABC

∠B = 90°

Therefore:

\rm \Longrightarrow tan \theta = \dfrac{Opposite \ Side}{Adjacent \ Side}

\rm \Longrightarrow tan \theta = \dfrac{AB}{BC}

\rm \Longrightarrow tan 60^\circ = \dfrac{AD + DB}{BC}

\rm \Longrightarrow \sqrt{3} = \dfrac{5 + DB}{BC}

\rm \Longrightarrow BC = \dfrac{5 + x}{\sqrt{3}}  

Let this be Equation(1).

In ΔDBC

∠B = 90°

Therefore:

\rm \Longrightarrow tan \theta = \dfrac{Opposite \ Side}{Adjacent \ Side}

\rm \Longrightarrow tan \theta = \dfrac{DB}{BC}

\rm \Longrightarrow tan45^\circ = \dfrac{x}{BC}

\rm \Longrightarrow 1 = \dfrac{x}{BC}

\rm \Longrightarrow BC= x

Let this be Equation(2).

From Eq(1) and Eq(2) we get:

\rm \Longrightarrow x = \dfrac{5 + x}{\sqrt{3}}

\rm \Longrightarrow \sqrt{3}x = 5 + x

\rm \Longrightarrow \sqrt{3}x - x = 5

\rm \Longrightarrow x(\sqrt{3} - 1) = 5

\rm \Longrightarrow x = \dfrac{5}{\sqrt{3} - 1}

\rm \Longrightarrow x = \dfrac{5}{\sqrt{3} - 1} \times \dfrac{\sqrt{3} + 1}{\sqrt{3} + 1}

\rm \Longrightarrow x = \dfrac{5\sqrt{3} + 5}{\big(\sqrt{3}\big)^2 - (1)^2}

\rm \Longrightarrow x = \dfrac{5\sqrt{3} + 5}{3 - 1}

\rm \Longrightarrow x = \dfrac{5(\sqrt{3} + 1)}{2}

\rm \Longrightarrow x = \dfrac{5(1.732 + 1)}{2}

\rm \Longrightarrow x = \dfrac{5(2.732)}{2}

\rm \Longrightarrow x = \dfrac{13.66}{2}

\rm \Longrightarrow x = 6.83m

Therefore, the height of the tower is 6.83 meters.

Attachments:
Similar questions