Math, asked by T0M, 9 months ago

A vessel is in the form of an inverted cone. Its height is 8 cm and the radius of its top, which is open, is 5 cm. It is filled with water up to the brim. When lead shots, each of which is a sphere of radius 0.5 cm are dropped into the vessel, one-fourth of the water flows out. Find the number of leads shots dropped in the vessel.

Answers

Answered by Anonymous
77

  \huge\boxed{\bf{\red{Solution:-}}}

 \bf{For \: cone}

 \sf \: Radius \: of \: the \: top \: (r) = 5 \: cm

 \sf \: Height \: (h) = 8 \: cm

 \therefore \:  \:  \:  \:  \:  \sf \:  \: Volume \: of \: the \: cone

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \sf =  \frac{1}{3}\pi  r {}^{2}h =  \frac{1}{3}\pi(5 ) {}^{2} 8 \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf  = \frac{1}{3}\pi \times 25 \times 8 =  \frac{200}{3}\pi \: cm {}^{3}  \\

 \therefore \:   \:  \: \:  \:  \sf \: Volume \: of \: water \: in \: cone

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =   \sf \frac{200\pi}{3} \: cm {}^{3}  \\

 \sf \: [∵ \: the \:cone  \:is  \: filled \:  \:with  \:  water\:  upto\:  the\:brim  \:(i.e., \: top)]

 \:  \:  \:  \bf{For \: spherical \: lead \: shot}

 \sf \: Radius \: (R) = 0.5 \: cm =  \frac{5}{10} =  \frac{1}{2} \: cm \\

 \therefore \:  \:  \:  \:  \:  \:  \:  \sf \: Volume \: of \: a \: spherical \: lead \: shot

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \:  \frac{4}{3}\pi R {}^{3}  =  \frac{4}{3}\pi \bigg( \frac{1}{2} \bigg) {}^{2}  =  \frac{4\pi}{3}  \times  \frac{1}{8} \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = \:   \frac{\pi}6 \: cm {}^{3}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(1) \\

 \bf{Given :} \:  \sf \: Volume \: of \: water \: that \: flows \: out \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: =   \sf \frac{1}{4 } \: volume \: of \: the \: (water) \: cone \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \frac{1}{4} \bigg( \frac{200\pi}{3} \bigg) \: cm {}^{3}  =  \frac{50\pi}{3} \: cm {}^{3}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ...(2) \\

 \sf \: Let \: the \: number \: of \: lead \: shots \: dropped \: in \: the \: vessel \: be  \: \red{n}.

 \sf \: Then,

 \sf \: Volume \: of \: n \: lead \: shots

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = \:  n \times volume \: of \: one \: lead \: shot

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf =  \:  \frac{n\pi}{6} \: cm {}^{3}  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \: [by(1)] \:  \: ...(3) \\

 \sf \: According \: to \: the \: question, \:

 \sf \: These \: n \: lead \: shots \: make \:  \frac{1}{4} \: of \: the \: water \:  \\  \sf  \: flow \: out \: of \: the \: cone.

 \therefore \:  \:  \:  \:  \:  \sf \: by \: (3) \: and \: (2)

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  =  \:  \sf \frac{n\pi}{6} =  \frac{50\pi}{3} \\

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf3n\pi = 300\pi \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (Cross - multiplying)

 \implies \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf \: n \:  =  \frac{300\pi}{3\pi} = 100 \\

 \sf \: Hence, \: the \: number \: of \: lead \: shots \: dropped \: in \: the \: vessel \: is \: 100.

Attachments:
Answered by Anonymous
27

\huge\underline\bold\green{Given}

{Height\: of \: cone\: = \: 8cm}

{Radius\: of\:  cone\: = 5cm}

{Radius\: of\: lead\: shot\: = 0.5cm}

\textbf{one-fourth of the water flows out when}\textbf{lead shot dropped in vessel}

\huge\underline\bold\green{Find\: out}

\textbf{Number of lead shot}

\huge\underline\bold\green{Formula\: used}

\textbf{Volume of cone}

\large\frac{1}{3}\pi{r^2h}

\textbf{Volume of sphere}

\large\frac{4}{3}\pi{r^3}

\huge\underline\bold\green{Solution}

\bold\red{Volume\: of\: cone}

\frac{1}{3}{×}\frac{22}{7}{×}{5×5×8}

\frac{110×40}{21}

\frac{4400}{21}cm³

________________________________

\bold\red{Volume\: of\: each\: lead\: shot}

\large\frac{4}{3}{×}\large\frac{22}{7}{×}{0.5×0.5×0.5}

\large\frac{2×11×0.5}{21}

\large\frac{11}{21}cm³

________________________

\bold\red{Volume\: of\: water\: that\: flows\: out\: when}\bold\red{lead\: shot\: dropped}

\large\frac{1}{4}{×}{Volume\: of\: cone}

\large\frac{1}{4}{×}\large\frac{4400}{21}

\large\frac{1100}{21}cm³

_______________________________

\bold\red{Number\: of\: lead\: shot}

\large\frac{Volume\: of\: water\: that\: flows\: out}{Volume\:  of\: each\: lead\: shot}

\large\frac{1100}{21}{÷}\frac{11}{21}

\large\frac{1100}{21}{×}\frac{21}{11}

100 lead shot

Attachments:
Similar questions