Math, asked by Anonymous, 5 months ago

A vessel is in the form of hemispherical bowl mounted by a hollow cylinder. the diameter of the sphere is 14cm and the total height of the vessel is 13cm. find the capacity of the vessel .​

Answers

Answered by Anonymous
47

━━━━━━━━━━━━━━━━━━━━━━

\sf \underline{Let ' \: understand \: the \: concept \: 1 'st}

The question is from very intersting topic of mathematics. The topic is related to Surface area and volume Now let's see basic concept -

  • Total capicity of the bowl = Volume of cylinder + Volume of hemisphere.

This question says that the diameter of the sphere is 14 cm. and the total height of vessel is 13 cm .Find the capicity of the vessel . And we know that how to find radius , height of cylinder and total capicity of the bowl.

Let's do it...!

━━━━━━━━━━━━

\sf  \underline {To \: find :- \: }

\sf  \small{❒ \: Capicity  \: of \: the \: bowl}

━━━━━━━━

 \sf \underline{Solution :-}

\sf  \small{Given \: that}

\small \sf{❒ \: Diameter = 14 \:  cm \: } then   \: the\: radius \: is : -  \:   \\ \\  \sf \small{❒ \: Radius =  \frac{Diameter}{2}  =  \frac{ \cancel{14}}{ \cancel{2}}  = 7 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \: } \\  \\   \small\sf {❒ \: Height =13 - 7 = 6 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  }

 \sf \small{Now} \\  \\ \sf \small{Total \:  capicity  \: of \:  the  \: bowl \:  = Volume \:  of  \: cylinder + Volume \:  of  \: hemisphere.</p><p>}

\sf  \small \: {\implies ( \: \pi \: r^{2} h +  \frac{2}{3}\pi  \: r^{3} )} \: cm ^{3}  \\  \\  \sf \small{  \implies\pi \: r ^{2}(h +  \frac{2}{3} \: r) \: cm^{3}   } \\   \\  \sf \small{ \implies \frac{22}{7} \times 7^{2} \times (6 +  \frac{2}{3} \times 7 ) \: cm^{3} }  \\   \\  \sf \small{ \implies \: 22 \times 7  \times   \frac{32}{3}  cm ^{3}  =  \frac{ \cancel{4928}}{ \cancel3} \: cm^{3}    }  \\  \\ \sf \small \red{ \implies \: 1642.66 \: cm^{3} .}

Attachments:
Similar questions