Chemistry, asked by kingkong94, 9 months ago

A vessel of 25 liter capacity contains 10 moles of steam under pressure of 50.3 atm Code
temperature of steam using Vander waal's equation (If for water a = 5 A6 bar 1 mol and
b = 0.031 L mol-!)​

Answers

Answered by shadowsabers03
19

We have, Van der Waals Equation,

\longrightarrow\sf{\left(P+\dfrac{an^2}{V^2}\right)\big(V-nb\big)=nRT}

Thus temperature is given by,

\longrightarrow\sf{T=\dfrac{\left(P+\dfrac{an^2}{V^2}\right)\big(V-nb\big)}{nR}}

Here,

  • \sf{V=25\ L}

  • \sf{n=10\ mol}

  • \sf{P=50.3\ atm=51\ bar}

  • \sf{a=5.46\ bar\,L^2\,mol^{-2}}

  • \sf{b=0.031\ L\,mol^{-1}}

We know the value of \sf{R} is,

\longrightarrow\sf{R=8.314\ J\,K^{-1}\,mol^{-1}}

Or,

\longrightarrow\sf{R=8.314\ m^3\,Pa\,K^{-1}\,mol^{-1}}

Since \sf{1\ m^3=10^3\ L,}

\longrightarrow\sf{R=8.314\times10^3\ L\,Pa\,K^{-1}\,mol^{-1}}

And since \sf{1\ Pa=10^{-5}\ bar,}

\longrightarrow\sf{R=8.314\times10^{-2}\ L\,bar\,K^{-1}\,mol^{-1}}

Hence,

\longrightarrow\sf{T=\dfrac{\left(P+\dfrac{an^2}{V^2}\right)\big(V-nb\big)}{nR}}

\longrightarrow\sf{T=\dfrac{\left(51+\dfrac{5.46\times10^2}{25^2}\right)\big(25-10\times 0.031\big)}{10\times8.314\times10^{-2}}}

\longrightarrow\sf{\underline{\underline{T=1540.5\ K}}}

Hence the temperature is \bf{1540.5\ K.}

Similar questions