Physics, asked by ritikkumar7739p3xv4f, 4 months ago

A vibrator of mass 1gm is acted upon by a restoring force per unit displacement of 10^(4)Nm^(-1) retarding force per unit velocity of 4Nm^(-1) sec and a driving force of cospt N . Calculate the value of maximum possible amplitude.​

Answers

Answered by saasyachowdary
1

Answr;

A=2‾√cm

A

=

2

c

m

,n=1000πHz

n

=

1000

π

H

z

A=12‾√cm

A

=

1

2

c

m

,n=500πHz

n

=

500

π

H

z

A=12‾√cm

A

=

1

2

c

m

,n=1000π

n

=

1000

π

Hz

Answer :

A

Solution :

For a displacement x, the kinetic and potential energies are KE=12m(A2−x2)ω2

K

E

=

1

2

m

(

A

2

-

x

2

)

ω

2

and PE=12mx2ω2

P

E

=

1

2

m

x

2

ω

2

Each of these =102=5J

=

10

2

=

5

J

when x=1cm

x

=

1

c

m

Hence 12mx2ω2=12×0.1×(1×10−2)2ω2=5

1

2

m

x

2

ω

2

=

1

2

×

0.1

×

(

1

×

10

-

2

)

2

ω

2

=

5

This gives ω2=100.1×10−4=106

ω

2

=

10

0.1

×

10

-

4

=

10

6

Giving ω=103=1000rads

ω

=

10

3

=

1000

r

a

d

s

Hence T=2πω=π500s

T

=

2

π

ω

=

π

500

s

And frequency f=500πs

f

=

500

π

s

Also, KE=5=12×0.1[A2−(1×10−2)2](106)

K

E

=

5

=

1

2

×

0.1

[

A

2

-

(

1

×

10

-

2

)

2

]

(

10

6

)

A2=2×10−4⇒A=2‾√×10−2m=2‾√cm

Similar questions