Physics, asked by devlikadewan109, 9 months ago

A water jet,whose cross sectional area is 'a' strikes a wall making an angle theta with the wall and rebounds with same elastically.The velocity of water of density 'd' is v.
Force exerted on wall is

Attachments:

Answers

Answered by rocky200216
41

\huge\mathcal{\underbrace{SOLUTION:-}}

✍️ See the attachment picture for direction of components of velocity .

Let,

  • v = velocity

  • d = density

  • V = volume

  • m = mass

\mathcal{\purple{Force\:=\:Rate\:of\:change\:in\:momentum\:}}

\rm{\implies\:Force\:=\:\dfrac{dp}{dt}\:}

Where,

  • dp = change in momentum .

✍️ The two components of velocity, ‘vcosθ’ are cancelled to each other . Because, in which direction water came, at that direction they left .

✍️ And the two components of velocity, ‘v sinθ’ are added to each other . Because, in which direction water came, that's opposite direction they left .

So,

\rm{\implies\:change\:in\:momentum\:(dp)\:=\:m\:v\sin\theta\:-\:(-\:m\:v\sin\theta)\:}

\rm{\implies\:dp\:=\:m\:v\sin\theta\:+\:m\:v\sin\theta\:}

\rm{\red{\implies\:dp\:=\:2\:m\:v\sin\theta\:}}

✍️ Now, calculating the force exerted on the wall .

\rm{\implies\:F\:=\:\dfrac{dp}{dt}\:}

\rm{\implies\:F\:=\:\dfrac{d(2\:m\:v\sin\theta)}{dt}\:}

\rm{\implies\:F\:=\:2\:v\sin\theta\:\times\:\dfrac{dm}{dt}\:}

  • mass = density(d) × volume(V)

\rm{\implies\:F\:=\:2\:v\sin\theta\:\times\:\dfrac{d({\green{d}}V)}{dt}\:}

\rm{\implies\:F\:=\:2\:(v\sin\theta)\:{\green{d}}\:\times\:\dfrac{dV}{dt}\:}

  • Volume(V) = Area(a) × Length(l)

\rm{\implies\:F\:=\:2\:(v\sin\theta)\:{\green{d}}\:\times\:\dfrac{d(a\:l)}{dt}\:}

\rm{\implies\:F\:=\:2\:(v\sin\theta)\:{\green{d}}\:a\:\times\:\dfrac{d\:l}{dt}\:}

  • velocity(v) = \mathcal{\dfrac{displacement}{time}\:}

✍️ So, Here \rm{\dfrac{d\:l}{dt}\:=\:velocity(v)\:}

\rm{\implies\:F\:=\:2\:(v\sin\theta)\:{\green{d}}\:a\:v\:}

\bigstar\:\rm{\boxed{\blue{\implies\:Force\:=\:2\:a\:d\:v^2\sin\theta\:}}}

Attachments:
Similar questions