Math, asked by SUR1st, 4 months ago

A water tank is filled with 52litres of water. Its length and breadth are8 cm and 6.5cm respectively. What is the height of the water in the tank?

Answers

Answered by amitsharma777222999
1

Answer:

52litre=52000cm3

8*6.5*h=52000

h=1000cm

=10m

Answered by Anonymous
9

Required Answer :

Given -

• A water tank is filled with 52 litres of water

• It's length and breadth are 8 cm and 6.5 cm respectively

To Find -

• Height of the water in the tank

Formula Used -

• Volume of Cuboid = Length × Breadth × Height

Solution -

To find the Height of the water in the tank, we need to find out the Volume of the water tank first, so let's do it!

As we know that, 1 l = 1000 ml

So, 52 l = 52000 ml ( 52 × 1000 = 52000 )

Hence, Converted!

Now we have the Volume of the water tank let's find out the Height of the water in the tank then!

Volume of Cuboid = Length × Breadth × Height

Volume of Cuboid = 8 × 6.5 × h

52000 = 52 × h

52000 = 52h

 = \sf\dfrac{52000}{52}

 = \sf\dfrac{\not52000}{\not52}

 = \sf1000

Height of the water in the tank is 1000 cm

Verification :

Volume of Cuboid = Length × Breadth × Height

Volume of Cuboid = 8 × 6.5 × 1000

Volume of Cuboid = 52000 cm

Hence, Verified!

___________________________________

Basic Formulae related to Cuboid :

Total Surface area = 2 ( Length x Breadth + Breadth x Height + Length x Height )

Lateral Surface area = 2 height( Length + Breadth )

Volume of cuboid = (length × breadth × height)

Diagonal of cuboid = √( l2 + b2 + h2 )

Perimeter of cuboid = 4 ( Length + Breadth + Height )

_________________________________

Additional Information :

\boxed{\begin{array}{c|c|c} \sf{Measure} & \sf{Standard\:Unit} & \sf{Measures\:used\:in\: day-to-day\:life} \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad\qquad}{} & \dfrac{\qquad\qquad}{} \\ \sf{Length} & \sf{metre} & \sf{mm,\:cm,\:m,\:km} \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad\qquad}{} &\dfrac{\qquad\qquad}{}\\ \sf{Weight\:(mass)} & \sf{gram} & \sf{mg,\:g,\:kg} \\ \dfrac{\qquad\qquad}{} & \dfrac{\qquad\qquad}{} & \dfrac{\qquad\qquad}{} \\ \sf{Capacity} & \sf{litre} & \sf{ml,\:L} \end{array}}

\boxed{\begin{array}{c|c|c|c} & \sf {Measures \:of \:length} & \sf {Measures\:of \: mass} & \sf {Measures\: of \: capacity} \\ \dfrac{\qquad \qquad}{} & \dfrac{\qquad\qquad}{} &\dfrac{\qquad\qquad}{} &\dfrac{\qquad \qquad}{} \\ \sf {Higher \: units} & \sf {Kilometre} & \sf {Kilogram} & \sf {Kilolitre} \\ & \quad{\uparrow} & \quad{\uparrow} & \quad{\uparrow} \\ & \sf{Hectometre} & \sf{Hectogram} & \sf{Hectolitre} \\ & \quad{\uparrow} & \quad{\uparrow} & \quad{\uparrow} \\ & \sf{Decametre} & \sf{Decagram} & \sf{Decalitre} \\ & \quad{\uparrow} & \quad{\uparrow} & \quad{\uparrow}\\  \boxed{\sf{Basic\: Unit}} & \boxed{\sf{METRE}} & \boxed{\sf{GRAM}} & \boxed{\sf{LITRE}} \\ &  \quad{\uparrow} & \quad{\uparrow} & \quad{\uparrow} \\ & \sf{Decimetre} & \sf{Decigram} & \sf{Decilitre} \\ & \quad{\uparrow} & \quad{\uparrow} & \quad{\uparrow} \\ \sf{Lower\: units} & \sf{Centimetre} & \sf{Centigram} & \sf{Centilitre} \\ & \quad{\uparrow} & \quad{\uparrow} & \quad{\uparrow} \\ & \sf{Millimetre} & \sf{Milligram} & \sf{Millilitre} \end{array}}

____________________________________

Similar questions