Math, asked by priyanayak1612, 2 months ago

A water tank is hemispherical below and cylindrical at the top. If the radius is 12 m and capacity is 3312π cubic metre, the height of the cylindrical portion in metres is:

Answers

Answered by ItzMeMukku
1

{ \large{ \sf{ \underbrace{\underline{\bigstar \: Answer}}}}}

\tt{Volume\: of\: a \:cylinder}[tex]\small{=\:  πr^2h \: cubic \: metre}

\sf\color{green}{= (144π x h)}\bold{cubic\: metre}

\textit{Volume\: of \:a\: hemisphere}

\sf\color{gold}{= 2/3πr^2h \:cubic \:metre}

\sf\color{gold}{=\: (144π x 8) cubic\: metre}

\bold{Volume\: of \:the \:water \:tank}

\sf\color{maroon}{= (πr^2h + 2/3πr^2h) cubic units }

\sf\color{maroon}{= 144π (8 + h) cubic metre}

\sf\bold\color{red}{According\: to \:the \:question,}

\tt{We\: have}

\sf\color{blue}{144π (8 + h) = 3312π}

\sf\color{blue}{(8 + h) = 23 or h = (23 - 8) metre}

\small\color{red}{= \:15\: metre}

\large{So,}

\small\color{purple}{the\: height \:of\: the \:cylinder \:is \:15 \:metre.}

Thankyou :)

Similar questions