Math, asked by saeepalekar5, 1 year ago

A water tap A takes seven minutes more than water tap B for filling up a tank with water. The tap A takes 16 minutes more than time taken by both the taps together to fill the tank. Find the each time the would take alone to fill the tank.

Answers

Answered by ONKAR2003
14
Let the Water tap B takes the time to fill the tank = y minutes

Now according o 1st condition

The Water tap A takes the time to fill the tank = (y + 7) minutes

Also according to second condition

Time taken by Tap A + 16 = Time taken by Both the taps

                    y + 7 + 16       =     y  + ( y + 7 )  

                    y  + 23           =  2 y  +  7    

             Rearranging the above equation, we get    

               2 y + 7      =  y + 23  

                2 y  -   y   = 23 - 7    

                     y    =    16  

So Water tap B takes the time to fill the tank = 16 minutes

And

Water tap A takes the time to fill the tank = 16 + 7 = 23  minutes

So Tap B alone takes 16 minutes and Tap A alone takes 23 minutes to fill the tank.


sandy1238: Its wrong
Answered by DIVINEREALM
29

ʟᴇᴛ ᴛʜᴇ ᴛɪᴍᴇ ᴛᴀᴋᴇɴ ʙʏ ᴀ ɪꜱ x ᴍɪɴᴜᴛᴇꜱ ᴀɴᴅ ʙ ɪꜱ ʏ ᴍɪɴᴜᴛᴇꜱ,

ʜᴇɴᴄᴇ ꜰʀᴏᴍ ᴛʜᴇ 1ꜱᴛ ꜱᴛᴀᴛᴇᴍᴇɴᴛ ᴡᴇ ʜᴀᴠᴇ,

x-ʏ = 7 = > ʏ = x-7..........................ᴇQ1

ɴᴏᴡ, ɪɴ ᴏɴᴇ ᴍɪɴᴜᴛᴇ ᴛᴀɴᴋ ꜰɪʟʟᴇᴅ ʙʏ ᴀ = 1/x

ᴀɴᴅ  ɪɴ ᴏɴᴇ ᴍɪɴᴜᴛᴇ ᴛᴀɴᴋ ꜰɪʟʟᴇᴅ ʙʏ ʙ = 1/ʏ

ꜱᴏ ᴄᴏᴍʙɪɴᴇ ᴛᴏɢᴇᴛʜᴇʀ ʙᴏᴛʜ ᴄᴀɴ ꜰɪʟʟ = 1/x  + 1/ʏ ᴛᴀɴᴋ ɪɴ ᴏɴᴇ ᴍɪɴᴜᴛᴇ,

ʜᴇɴᴄᴇ ᴛɪᴍᴇ ᴛᴀᴋᴇɴ ʙʏ ʙᴏᴛʜ ᴛʜᴇ ᴛᴀᴘꜱ ᴛᴏ ꜰɪʟʟ ᴛʜᴇ ᴛᴀɴᴋ

= 1/(1/x + 1/ʏ)

= xʏ/x+ʏ

ɴᴏᴡ ꜰʀᴏᴍ ᴛʜᴇ ꜱᴇᴄᴏɴᴅ ꜱᴛᴀᴛᴇᴍᴇɴᴛ,

x- xʏ/x+ʏ   = 16

=> x² + xʏ - xʏ = 16(x+ʏ)

=> x² -16x - 16ʏ = 0

ᴘᴜᴛᴛɪɴɢ ᴛʜᴇ ᴠᴀʟᴜᴇ ᴏꜰ ʏ ꜰʀᴏᴍ ᴇQ1

x²-16x - 16(x-7) = 0

=> x² - 32x + 112 = 0.

ꜱᴏʟᴠɪɴɢ ᴛʜᴇ ᴀʙᴏᴠᴇ Qᴜᴀᴅʀᴀᴛɪᴄ ᴇQɴ, ᴡᴇ ɢᴇᴛ

x = 28 ᴏʀ 4

ʀᴇᴊᴇᴄᴛɪɴɢ 4 ᴀꜱ x ᴄᴀɴ'ᴛ ʙᴇ ʟᴇꜱꜱ ᴛʜᴀɴ 7

x = 28

ʏ = x-7 = 28-7 = 21

ʜᴇɴᴄᴇ ᴛɪᴍᴇ ᴛᴀᴋᴇɴ ʙʏ ʙᴏᴛʜ ᴛʜᴇ ᴛᴀᴘꜱ ᴀʀᴇ 28 ᴀɴᴅ 21 ᴍɪɴᴜᴛᴇꜱ ᴀʟᴏɴᴇ.

Similar questions