Math, asked by Abhinavbajaj8031, 1 year ago

A watermelon is cut into two pieces in the ratio of 3:5 by weight. the bigger of the two is further cut in the ratio of 5:7 by weight. find the ratio of weight of each of the three pieces.

Answers

Answered by sangiboysk
23

Let A ,B and C be the parts.

Then, A:B=3:5

B is cut ( converted) into two parts

i.e. 5:7

Then, 5 x 5 ÷ 12 = 25/12

Also, 7x5 ÷12 = 35/12

3 : 25/12 : 35/12

= 36 : 25 : 35 (taking LCM and cutting )

Answered by MasterKaatyaayana2
0

Answer:

36 : 25 : 35

Step-by-step explanation:

Without loss of generality assume weight of the watermelon is 80 kg.

After being divided in ratio 3:5 we have two parts each of weight

3*80/(3+5) =30 and 50 kg. Now again  50 kg part of watermelon is cut into two pieces  in ratio 5:7; this gives weight of new pieces as

\implies \frac{5}{12} \times 50 = 125/6Kg \,\,  and \,\, \frac{7}{12} \times 50 = 175/6 Kg\\

So, finally we get three parts of weight

30 : 125/6 : 175/6

On simplifying this ratio by dividing by 5 and multiplying by 6, we get

36 : 25 : 35

#SPJ2

Similar questions