Physics, asked by HrithikSinghChauhan, 3 months ago

A wave is represented by y=0.25x10^-3 sin (0.025x-500t),
where y, t, x are in meter respectively.

calculate=>

a) amplitude
b) Time period
c) angular velocity
d) wave length
e) speed
----------------------------------------------
Disclaimer:-

Answer is not available in net don't take risks No Spam✔️

Answers

Answered by nirman95
16

Given:

A wave is represented by:

 \boxed{y = 0.25  \times  {10}^{ - 3}   \sin\bigg(0.025x - 500t \bigg)}

where y, t, x are in meter respectively.

To find:

Value of :

  • Amplitude
  • Time period
  • Angular frequency
  • Wavelength
  • Speed

Calculation:

Amplitude is the maximum displacement of the medium particles during propagation of the wave.

y = 0.25  \times  {10}^{ - 3}   \sin\bigg(0.025x - 500t \bigg)

  • For amplitude, value of sin should be be max.

 \implies \: y_{max} = 0.25  \times   {10}^{ - 3} \times   \bigg(1\bigg)

 \implies \: y_{max}  = 0.25  \times   {10}^{ - 3}  \: m

_______________________________________

Comparing the given equation with s standard equation of a wave :

y = a \sin( kx - \omega t)

We get ,

  • \omega = 500 Hz.
  • k = 0.025

 \therefore \: angular \: freq. =  \omega = 500 \: hz

_______________________________________

 \therefore \: T =  \dfrac{2\pi}{ \omega}

 \implies \: T =  \dfrac{2\pi}{500}

 \implies \: T =  0.012 \: sec

_______________________________________

 \therefore \:  \lambda =  \dfrac{2\pi}{k}

 \implies \:  \lambda =  \dfrac{2\pi}{0.025}

 \implies \:  \lambda =  \dfrac{2000\pi}{25}

 \implies \:  \lambda =  251.32 \: m

_______________________________________

 \therefore \: v = f \times  \lambda

 \implies \: v =  \dfrac{ \omega}{2\pi}  \times  \dfrac{2\pi}{k}

 \implies \: v =  \dfrac{ \omega}{k}

 \implies \: v =  \dfrac{500}{0.025}

 \implies \: v =  \dfrac{500 \times 1000}{25}

 \implies \: v =  2 \times  {10}^{5 }  \: m {s}^{ - 1}

_______________________________________


Saby123: Awesome
nirman95: Thank you :)
Similar questions