Math, asked by jayupreti, 11 months ago

(A well of diam. 4m is dug 14 m deeps the earth
the earth taken out is spread evently all around the well
to form a 40 cm high embankment. Find width
of embankment​

Answers

Answered by CharmingPrince
17

\huge{ \green{ \mathfrak{ \underline{Question}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

■☆A well of diam. 4m is dug 14 m deeps the earth the earth taken out is spread evently all around the well to form a 40 cm high embankment. Find width of embankment☆■

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

\huge{ \green{ \mathfrak{ \underline{Answer}}}}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Let radius of embankment be = \blue{r\: metre}

Radius\: of\: well(R)= \blue{2 m}

Depth(h) = \blue{14 m}

\boxed{\red{\bold{Volume \:of\: Well:}}}

\implies \pi R^2H

\implies \pi × 2^2 × 14

\implies \pi × 4 × 14

\blue{\implies 56 \pi m^3}

Radius\: of \: embankment = \purple{r \:m}

Height \: of\: embankment (h)= 40\:cm =\purple{ \displaystyle{\frac{40}{100}} m =\frac{2}{5}m}

\boxed{\red{\bold{Volume\:of\:embankment: }}}

\implies \pi r^2 h - \pi R^2 h

\implies \pi \left( r^2 × \displaystyle{\frac{2}{5}} - 2^2 × \frac{2}{5} \right)

\implies \pi \left( \displaystyle{\frac{2r^2}{5}} - \frac{8}{5} \right)

\purple{\implies \pi \left( \displaystyle{\frac{2r^2-8}{5}} \right)}

\boxed{\red{\bold{Equating\: the \: volumes:}}}

\implies \blue{56 \pi} = \purple{\pi \left( \displaystyle{\frac{2r^2 -8}{5}} \right)}

\implies 56 = \displaystyle{\frac{2r^2-8}{5}}

\implies 280 = 2r^2 - 8

\implies r^2 - 4 = 140

\implies r=\sqrt{144}

\green{\implies r = 12 m}

\boxed{\red{\bold{Width\:of \: embankment:}}}

\purple{r - R = 12m - 2m = 10m}

▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂

Attachments:
Similar questions