Math, asked by akjha47, 1 year ago

A well of diameter 3 m is dug 14 m deep. The earth taken out of it has been spread evenly
all around it in the shape of a circular ring of width 4 m to form an embankment. Find the
height of the embankment

Answers

Answered by Anonymous
112

Solution:

Given:

=> Diameter of well = 3 cm

=> Radius of well = \sf{\dfrac{3}{2}\;cm}

=> Height (h) = 14 cm

To Find:

=> Height of embankment.

Formula used:

\sf{\implies Volume\;of\;circle=\pi r^{2}h}

\sf{\implies Area\;of\;embankment = Outer\;area-Inner\;area}

\sf{\implies \pi R^{2}-\pi r^{2}}

So,

\sf{\implies Volume\;of\;the\;earth\;taken\;out\;of\;the\;well=\pi r^{2}h}

\sf{\implies \dfrac{22}{7}\times \dfrac{3}{2}\times \dfrac{3}{2}\times 14}

\sf{\implies 99\;m^{3}}

\sf{\implies Outer\;radius\;of\;embankment=R=\Bigg(\dfrac{3}{2}+4\Bigg)\;m=\dfrac{11}{2}\;m}

\sf{\implies Area\;of\;embankment = Outer\;area-Inner\;area}

\sf{\implies \pi R^{2}-\pi r^{2}}

\sf{\implies \dfrac{22}{7}\times \Bigg[\bigg(\dfrac{11}{2}\bigg)^{2}-\bigg(\dfrac{3}{2}\bigg)^{2}\Bigg]}

\sf{\implies \dfrac{22}{7}\times \Bigg[\dfrac{121}{4}-\dfrac{9}{4}\Bigg]}

\sf{\implies \dfrac{22}{7} \times \dfrac{112}{4}}

\sf{\implies 88\;m^{2}}

Hence,

\sf{\implies Height\;of\;embankment=\dfrac{Volume}{Area}}

\sf{\implies \dfrac{99}{88}}

\large{\boxed{\boxed{\red{\sf{\implies Height\;of\;embankment=1.125\;m}}}}}

Answered by BrainlyConqueror0901
60

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore Height=1.125\:m}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In the given question information given about a well of diameter 3 m is dug 14 m deep. The earth taken out of it has been spread evenly all around it in the shape of a circular ring of width 4 m to form an embankment.

• We have to find the height of the embankment.

 \underline \bold{Given : } \\  \implies Diameter \: of \: well = 3 \:  m \\   \\  \implies Depth = 14 \: m \\  \\  \implies Width \: of \: embankment = 4 \: m \\  \\ \underline \bold{To \: Find :  } \\  \implies Height  \: of \: embankment = ?

• According to given question :

 \bold{By \: Volume \: of \: cylinder : } \\ \implies Volume \: of \:well = \pi {r}^{2} h  \\   \\  \implies Volume =  \pi  ( {1.5})^{2}  \times 14 \\  \\   \bold{\implies Volume = 31.5\pi m^{3}} \\  \\  \bold{For \: Outer \: radius :} \\  \implies R = ( \frac{3}{2} + 4) =  \frac{11}{2}  \\   \bold{Area \: of \: embankment =(Outer \: Area - Inner \: Area)} \\   \implies Area = \pi(( \frac{11}{2})^{2}  - ( { \frac{3}{2} })^{2} ) \\  \\  \implies Area =  \pi(\frac{121}{4} -  \frac{9}{4})   \\  \\  \implies Area = \pi (\frac{121 - 9}{4}  )\\  \\  \implies Area = 28\pi {m}^{2}  \\  \\ \bold{ For \: height \: of \: embankment :}\\   \implies H=  \frac{Volume}{Area}  \\   \\  \implies H =  \frac{ \cancel{31.5\pi}}{ \cancel{28\pi}}  \\  \\   \bold{\implies H = 1.125 \: m} \\  \\  \bold {\therefore Height  \: of \: embankment \: is \: 1.125 \: m}

Similar questions