Math, asked by abhaylucky9999, 4 months ago

a well of diameter 3m is dug 14m deep. the earth taken out of it has been spread evenly all around it in the shape to a circular ring of width 4m to form an embankment.find the height of the embankment.​

Answers

Answered by EliteZeal
44

\tt\Huge{\orange{\underline{\blue{ Answer :-}}}}

 \:\:

\underline\bold{\large{\gray{\textbf{Given :-}}}}

 \:\:

  • Diameter of well = 3 m

 \:\:

  • Height of well = 14 m

 \:\:

  • Width of circular ring around the well

 \:\:

\underline\bold{\large{\gray{\textbf{To \: Find :-}}}}

 \:\:

  • The height of embankment

 \:\:

\underline{\large{\gray{\textbf{Solution :-}}}}

 \:\:

We know that ,

 \:\:

 \sf Radius = \dfrac { Diameter } { 2 }

 \:\:

 \sf Radius = \dfrac { 3} { 2 }

 \:\:

Volume of the earth taken out of the well = Volume of well

 \:\:

 \underline{\bold{\texttt{Volume of cylinder :}}}

 \:\:

➠ πr²h ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

  • r = Radius

  • h = Height

 \:\:

 \underline{\bold{\texttt{Volume of cylindrical well :}}}

 \:\:

  • r =  \sf \dfrac { 3 } { 2 }

  • h = 14

 \:\:

Putting these values in ⓵

 \:\:

➜ πr²h

 \:\:

 \sf \dfrac { 22 } { 7 } × \dfrac { 3 } { 2 } × \dfrac { 3 } { 2 } × 14

 \:\:

➜ 11 × 3 × 3

 \:\:

➜ 11 × 9

 \:\:

➜ 99 cu. m. ⚊⚊⚊⚊ ⓶

 \:\:

  • Hence the volume of well is 99 cu. m. thus the volume of earth taken out is 99 cu. m.

 \:\:

External radius = Radius of well + Width of circular ring around well

 \:\:

➜ External radius =  \sf \dfrac { 3 } { 2 } + 4

 \:\:

➜ External radius =  \sf \dfrac { 11 } { 2 }

 \:\:

 \underline{\bold{\texttt{Volume of cylinder with external radius :}}}

 \:\:

  • r =  \sf \dfrac { 11 } { 2 }

  • h = H = Height of embankment

 \:\:

Putting these values in ⓵

 \:\:

➜ πr²h

 \:\:

 \sf \dfrac { 22 } { 7 } × \dfrac { 11 } { 2 } × \dfrac { 11 } { 2 } × H

 \:\:

 \sf \dfrac { 11 × 11 × 11 } { 7 × 2 } × H

 \:\:

 \sf \dfrac { 1331 } { 14 } × H cu. m. ⚊⚊⚊⚊ ⓷

 \:\:

  • Hence the volume of cylinder with external radius is  \sf \frac { 1331 } { 14 } × H cu. m.

 \:\:

Internal radius = Radius of well

 \:\:

 \underline{\bold{\texttt{Volume of cylinder with internal radius :}}}

 \:\:

  • r =  \sf \dfrac { 3 } { 2 }

  • h = H = Height of embankment

 \:\:

Putting these values in ⓵

 \:\:

➜ πr²h

 \:\:

 \sf \dfrac { 22 } { 7 } × \dfrac { 3 } { 2 } × \dfrac { 3 } { 2 } × H

 \:\:

\sf \dfrac { 11 × 3 × 3 } { 7 × 2 } × H

 \:\:

 \sf \dfrac { 99 } { 14 } × H ⚊⚊⚊⚊ ⓸

 \:\:

  • Hence the volume of cylinder with internal radius is  \sf \frac { 99 } { 14 } × H cu. m.

 \:\:

Volume of cylinder with external radius - Volume of cylinder with Internal radius = Volume of embankment around the well

 \:\:

⓷ - ⓸

 \:\:

 \sf \dfrac { 1331 } { 14 } × H - (\dfrac { 99 } { 14 } × H )

 \:\:

 \sf \dfrac { H } { 14 } × 1331 - 99

 \:\:

 \sf \dfrac { H } { 14 } × 1232

 \:\:

➜ 88 × H cu. m. ⚊⚊⚊⚊ ⓹

 \:\:

  • Hence volume of embankment is 88H cu. m.

 \:\:

As earth taken out from well is spread to form embankment

 \:\:

So,

 \:\:

Volume of embankment = Volume of well

 \:\:

⓹ = ⓶

 \:\:

➜ 88 × H = 99

 \:\:

 \sf H = \dfrac { 99 } { 88 }

 \:\:

➨ H = 1.125 m

 \:\:

  • Hence the height of the embankment is 1.125 m

 \:\:

═════════════════════════

Answered by Ranveerx107
1

\tt\Huge{\orange{\underline{\blue{ Answer :-}}}}

 \:\:

\underline\bold{\large{\gray{\textbf{Given :-}}}}

 \:\:

  • Diameter of well = 3 m

 \:\:

  • Height of well = 14 m

 \:\:

  • Width of circular ring around the well

 \:\:

\underline\bold{\large{\gray{\textbf{To \: Find :-}}}}

 \:\:

  • The height of embankment

 \:\:

\underline{\large{\gray{\textbf{Solution :-}}}}

 \:\:

We know that ,

 \:\:

 \sf Radius = \dfrac { Diameter } { 2 }

 \:\:

 \sf Radius = \dfrac { 3} { 2 }

 \:\:

Volume of the earth taken out of the well = Volume of well

 \:\:

 \underline{\bold{\texttt{Volume of cylinder :}}}

 \:\:

➠ πr²h ⚊⚊⚊⚊ ⓵

 \:\:

Where ,

 \:\:

r = Radius

h = Height

 \:\:

 \underline{\bold{\texttt{Volume of cylindrical well :}}}

 \:\:

r =  \sf \dfrac { 3 } { 2 }

h = 14

 \:\:

⟮ Putting these values in ⓵ ⟯

 \:\:

➜ πr²h

 \:\:

 \sf \dfrac { 22 } { 7 } × \dfrac { 3 } { 2 } × \dfrac { 3 } { 2 } × 14

 \:\:

➜ 11 × 3 × 3

 \:\:

➜ 11 × 9

 \:\:

➜ 99 cu. m. ⚊⚊⚊⚊ ⓶

 \:\:

Hence the volume of well is 99 cu. m. thus the volume of earth taken out is 99 cu. m.

 \:\:

External radius = Radius of well + Width of circular ring around well

 \:\:

➜ External radius =  \sf \dfrac { 3 } { 2 } + 4

 \:\:

➜ External radius =  \sf \dfrac { 11 } { 2 }

 \:\:

 \underline{\bold{\texttt{Volume of cylinder with external radius :}}}

 \:\:

r =  \sf \dfrac { 11 } { 2 }

h = H = Height of embankment

 \:\:

⟮ Putting these values in ⓵ ⟯

 \:\:

➜ πr²h

 \:\:

 \sf \dfrac { 22 } { 7 } × \dfrac { 11 } { 2 } × \dfrac { 11 } { 2 } × H

 \:\:

 \sf \dfrac { 11 × 11 × 11 } { 7 × 2 } × H

 \:\:

 \sf \dfrac { 1331 } { 14 } × H cu. m. ⚊⚊⚊⚊ ⓷

 \:\:

  • Hence the volume of cylinder with external radius is  \sf \frac { 1331 } { 14 } × H cu. m.

 \:\:

Internal radius = Radius of well

 \:\:

 \underline{\bold{\texttt{Volume of cylinder with internal radius :}}}

 \:\:

r =  \sf \dfrac { 3 } { 2 }

h = H = Height of embankment

 \:\:

⟮ Putting these values in ⓵ ⟯

 \:\:

➜ πr²h

 \:\:

 \sf \dfrac { 22 } { 7 } × \dfrac { 3 } { 2 } × \dfrac { 3 } { 2 } × H

 \:\:

\sf \dfrac { 11 × 3 × 3 } { 7 × 2 } × H

 \:\:

 \sf \dfrac { 99 } { 14 } × H ⚊⚊⚊⚊ ⓸

 \:\:

  • Hence the volume of cylinder with internal radius is  \sf \frac { 99 } { 14 } × H cu. m.

 \:\:

  • Volume of cylinder with external radius - Volume of cylinder with Internal radius = Volume of embankment around the well

 \:\:

⓷ - ⓸

 \:\:

 \sf \dfrac { 1331 } { 14 } × H - (\dfrac { 99 } { 14 } × H )

 \:\:

 \sf \dfrac { H } { 14 } × 1331 - 99

 \:\:

 \sf \dfrac { H } { 14 } × 1232

 \:\:

➜ 88 × H cu. m. ⚊⚊⚊⚊ ⓹

 \:\:

Hence volume of embankment is 88H cu. m.

 \:\:

As earth taken out from well is spread to form embankment

 \:\:

So,

 \:\:

Volume of embankment = Volume of well

 \:\:

⓹ = ⓶

 \:\:

➜ 88 × H = 99

 \:\:

 \sf H = \dfrac { 99 } { 88 }

 \:\:

➨ H = 1.125 m

 \:\:

Hence the height of the embankment is 1.125 m

 \:\:

═════════════════════════

Similar questions