Hindi, asked by javahirkumar023835, 8 months ago

A well with 10 m inside diameter is dug 14 m deep. Earth taken out of it is apread all a round toa width of 5 m to form an embankment. find​

Answers

Answered by saisha2492006
1

Diameter of well = 10 m

Radius of well = \frac{Diameter}{2} = \frac{10}{2} = 5m

Depth of well = 14 m

Volume of well =\pi r^{2} h

                         =\frac{22}{7} * 5^{2} *14

                        = 1100m^{3}

Earth taken out of it is spread all a round to a width of 5m to form an embankment.

Radius of embankment. = 5 m + 5 m = 10 m

Let the height of embankment be h

Volume of embankment = \pi r^{2} h

                                        = \frac{22}{7} *10*h

Since Earth taken out of it is spread all a round to a width of 5m to form an embankment. So, volume of well = Volume of embankment

So, 1100= \frac{22}{7} * 10^{2} *h

     1100*\frac{7}{22} * \frac{1}{10^{2} } \\\\= 3.5 = h

Hence the height of the embarkment is 3.5 m.

Answered by Aimanfatima04
1

Answer:

hi siso aisha love u and thanks for giving my answer ........

Similar questions