Math, asked by vagadiamanav, 3 months ago

(a) What is the value of k for which the quadratic equation 3x2 - Kx+k=0 has
equal roots?
(A) 6
(C) -12 (D) 12​

Answers

Answered by Anonymous
10

Answer : (D) 12 ✔✔

___________________________

Solution :

Let, the roots be

 \alpha  \: and \:  \beta

Now, according to the question :

 \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - ( - k)}{3}  \\  \\  =  >  \alpha   +  \alpha  =  \frac{k}{3}  \\  \\  =  > 2 \alpha  =  \frac{k}{3}  =  >  \alpha  =  \frac{k}{6} ...(1)

 \alpha  \times  \beta  =  \frac{c}{a}  =  \frac{k}{3}  \\  \\  =  >   \alpha  \times  \alpha  =  \frac{k}{3}  \\  \\  =  >  { \alpha }^{2}  =  \frac{k}{3}

From equation (1) :

 {( \frac{k}{6}) }^{2}  =  \frac{k}{3}  \\  \\  =  >  \frac{ {k}^{2} }{36}  =  \frac{k}{3}  \\  \\  =  > k =  \frac{36}{3}  = 12

Similar questions