A. What position does Philip sletherby hope to get? B. Who is Philip sletherby on his way to visit? Why? C. What is meant by 'on approval'? D. How does Bertie knows that Philip is going to visit her mother? E. Where is Bertie going? F. What has Bertie forgotton and what does he want Philip to do? G. What are the six items Bertie Jason his pockets? H. What are two reasons why Philip does not help Bertie?
Answers
Answer:
Photosynthesis is the process used by plants, algae and certain bacteria to harness energy from sunlight and turn it into chemical energy. Here, we describe the general principles of photosynthesis and highlight how scientists are studying this natural process to help develop clean fuels and sources of renewable energy.
Types of photosynthesis
There are two types of photosynthetic processes: oxygenic photosynthesis and anoxygenic photosynthesis. The general principles of anoxygenic and oxygenic photosynthesis are very similar, but oxygenic photosynthesis is the most common and is seen in plants, algae and cyanobacteria.
During oxygenic photosynthesis, light energy transfers electrons from water (H2O) to carbon dioxide (CO2), to produce carbohydrates. In this transfer, the CO2 is "reduced," or receives electrons, and the water becomes "oxidized," or loses electrons. Ultimately, oxygen is produced along with carbohydrates.
Oxygenic photosynthesis functions as a counterbalance to respiration by taking in the carbon dioxide produced by all breathing organisms and reintroducing oxygen to the atmosphere.
On the other hand, anoxygenic photosynthesis uses electron donors other than water. The process typically occurs in bacteria such as purple bacteria and green sulfur bacteria, which are primarily found in various aquatic habitats.
"Anoxygenic photosynthesis does not produce oxygen — hence the name," said David Baum, professor of botany at the University of Wisconsin-Madison. "What is produced depends on the electron donor. For example, many bacteria use the bad-eggs-smelling gas hydrogen sulfide, producing solid sulfur as a byproduct."
Though both types of photosynthesis are complex, multistep affairs, the overall process can be neatly summarized as a chemical equation.
Oxygenic photosynthesis is written as follows:
6CO2 + 12H2O + Light Energy → C6H12O6 + 6O2 + 6H2O
Here, six molecules of carbon dioxide (CO2) combine with 12 molecules of water (H2O) using light energy. The end result is the formation of a single carbohydrate molecule (C6H12O6, or glucose) along with six molecules each of breathable oxygen and water.
Similarly, the various anoxygenic photosynthesis reactions can be represented as a single generalized formula:
CO2 + 2H2A + Light Energy → [CH2O] + 2A + H2O
The letter A in the equation is a variable and H2A represents the potential electron donor. For example, A may represent sulfur in the electron donor hydrogen sulfide (H2S), explained Govindjee and John Whitmarsh, plant biologists at the University of Illinois at Urbana-Champaign, in the book "Concepts in Photobiology: Photosynthesis and Photomorphogenesis" (Narosa Publishers and Kluwer Academic, 1999).