(a) What should be subtracted from 3X² - 4Y² + 5XY + 20 to optain -X² - Y² + 6XY + 20?
(b) Find the final expression when the algebraic expression X² + 2XY + Y² is multiplied by XY.
Answers
(1) What should be subtracted from 3X² - 4Y² + 5XY + 20 to optain -X² - Y² + 6XY + 20?
ⓈⓄⓁⓊⓉⒾⓄⓃ:--
Let Q be the expression to be subtracted.
Then according to the question,
3X² - 4Y² + 5XY + 20 - Q= -X² - Y² + 6XY + 20
---> Q= 3X² - 4Y² + 5XY + 20 - (-X² - Y² - 6XY - 20)
---> Q= 3X² - 4Y² + 5XY + 20 + X² + Y² - 6XY - 20
---> Q= 3X² + X² - 4Y² + Y² + 5XY + 6XY + 20 - 20
---> Q= 4X² - 3Y² - XY + 0
Hence, 4X² - 3Y² - XY should be subtracted from 3X² - 4Y² + 5XY + 20 to optain -X² - Y² + 6XY + 20.
(2) Find the final expression when the algebraic expression X² + 2XY + Y² is multiplied by XY.
ⓈⓄⓁⓊⓉⒾⓄⓃ:--
As per question:
X² + 2XY + Y² is multiplied by XY.
So, XY × X² + 2XY + Y².
= XY × X² + XY × 2XY + XY × Y²
= X² + ¹Y + 2X¹ + ¹Y + ¹ + XY¹ + 2
Therefore, a^m × a^n = a^m + ^n
= X³Y + 2X²Y² + XY³.
ⒽⓄⓅⒺ ⒾⓉ ⒾⓈ ⒽⒺⓁⓅⒻⓊⓁ
ⒽⒺⓎ
ⒽⒺⓇⒺ ⒾⓈ ⓎⓄⓊⓇ ⒶⓌⓃⓈⓌⒺⓇ
ⓆⓊⒺⓈⓉⒾⓄⓃ:
(a) What should be subtracted from 3X² - 4Y² + 5XY + 20 to optain -X² - Y² + 6XY + 20?
ⓈⓄⓁⓊⓉⒾⓄⓃ:--
Let Q be the expression to be subtracted.
Then according to the question,
3X² - 4Y² + 5XY + 20 - Q = -X² - Y² + 6XY + 20
----> Q = 3X² - 4Y² + 5XY + 20 - (-X² - Y² + 6XY + 20)
----> Q = 3X² - 4Y² + 5XY + 20 + X² + Y² - 6XY - 20
----> Q = 3X² + X² - 4Y² + Y² + 5XY - 6XY + 20 - 20
----> Q = 4X² - 3Y² - XY + 0
Hence,
4X² - 3Y² - XY should be subtracted from 3X² - 4Y² + 5 XY + 20 to obtain -X² - Y² + 6XY + 20.
ⓆⓊⒺⓈⓉⒾⓄⓃ:
(b) Find the final expression when the algebraic expression X² + 2XY + Y² is multiplied by XY.
ⓈⓄⓁⓊⓉⒾⓄⓃ:--
As per question:
X² + 2XY + Y² is multiplied by XY.
So, XY × X² + 2XY + Y²
= XY × X² + XY × 2XY + XY × Y²
= X² + ¹Y + 2X¹ + ¹Y¹ + ¹ + XY¹ + ²
Therefore, a^m × a^n = a^m + ^n
= X³Y + 2X²Y² + XY³
ⒽⓄⓅⒺ ⒾⓉ ⒽⒺⓁⓅⓈ