Physics, asked by PhysicsHelper, 1 year ago

A wheel is making revolutions about its axis with uniform angular acceleration. Starting from rest, it reaches 100 revs/second in 4 seconds.Find the angular acceleration ? Find the angle rotated during these four seconds.

Answers

Answered by tiwaavi
103
Given in the question :-
t = time = 4 s.
Initial angular velocity,ω₀  = 0
Final angular velocity,
ω' =100 revs/s .
α = angular acceleration 

We know the formula,
 ω' = ω₀ + αt

100 = 0 + α x 4

α =100/4
α = 25 rev/s².
Here, The angle rotated into three equation of kinematics . 

\theta = \omega t+  \frac{1}{2}  \alpha t^2
= 0 +  \frac{1}{2} * 25 * 4^2
=8 x 25
= (200 x 2 
π)
=400 π radians.


Hope it Helps :-)
Answered by bhuvna789456
13

The angular acceleration is α = 25 rev/s².

The angle rotated during these four seconds is 400 π radians.

Explanation:

Given values :

                      t = time = 4 s.

                      ω₀  = 0

Formula :           ω' = ω₀ + αt

Where,           ω₀  is Initial angular velocity

                      ω' = 100 revs/s .

                      ω' is Final angular velocity  

                      α = angular acceleration  

We are aware of the formula,

                        ω' = ω₀ + αt

                       100 = 0 + α x 4      

                          α = 100/4

                          α = 25 rev/s².                    

There, the angle transformed into three kinematics equations.

                            $\theta=w t+\frac{1}{2} \alpha t^{2}$

                            $\theta=0+\frac{1}{2} \times 25 \times 4^{2}$

                            $\theta=\frac{1}{2} \times 25 \times 16$

                             $\theta=25 \times 8$          

                                = 200                  

In radian,      

                    =200×2π      

                    =400 π radians.

Therefore, the angular acceleration is α = 25 rev/s² and the angle rotated during those four seconds is 400 π radians.

Similar questions