Physics, asked by Maheshkathar, 10 months ago

A wire a diameter 3mm and length 4m extended by 2.5 mm when a force of 10N is applied find the Young's modulus of material of wire?​

Answers

Answered by BrainlyConqueror0901
15

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\therefore{\text{Young 's \: modulus}}= 3.4 \times {10}^{7}N/m^{2}}

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

• In tthe given question information given about a wire a diameter 3mm and length 4m extended by 2.5 mm when a force of 10N is applied.

We have to find the Young's modulus of the wire.

 \green{ \underline\bold{Given : }} \\ : \implies \text{Diameter \: of \: wire (d)= 3mm = 3} \times {10}^{ - 4} m \\ \\ : \implies \text{Length \: of \: wire (l)= 4m} \\ \\ : \implies \text{Change \: in \: length}( \Delta \: l) = 2.5mm = 2.5 \times {10}^{ - 4} m \\ \\ : \implies \text{force = 10 N} \\ \\ \red{ \underline\bold{To \: Find : }} \\ : \implies \text{young 's \: modulus = ?}

• According to given question : : \implies \text{young 's \: modulus} = \frac{ \text{strees}}{ \text{strain}} \\ \\ : \implies\text{young 's \: modulus} = \frac{ \frac{force}{area} }{ \frac{change \: in \: length}{original \: length} } \\ \\ : \implies\text{young 's \: modulus} = \frac{f \times l}{A \times \Delta} \\ \\ : \implies\text{young 's \: modulus} = \frac{10 \times 4}{\pi {r}^{2} \times 2.5 \times {10}^{ - 4} } \\ \\ : \implies\text{young 's \: modulus} = \frac{40}{3.14 \times 1.5 \times {10}^{ - 4} \times 2.5 \times {10}^{ - 4} } \\ \\ : \implies\text{young 's \: modulus} = \frac{40 \times {10}^{2} \times 10 \times 10 \times {10}^{8} }{314 \times 15 \times 25 } \\ \\ : \implies\text{young 's \: modulus} = \frac{4 \times {10}^{12} }{117750} \\ \\ : \implies\text{young 's \: modulus} = 0.0000339702 \times {10}^{12} \\ \\ \green{ : \implies\text{young 's \: modulus} = 3.4 \times {10}^{7}N/m^{2} }

Similar questions