Math, asked by cakash4064, 1 year ago

A wire bent in the form of an equilateral triangle encloses an area of 121 under root 3 cm square. If the wire is bent in the form of a circle, find the area enclosed by circle

Answers

Answered by adarshhoax
5
contact me.
I will give you the full answer
Answered by wifilethbridge
5

Answer:

346.5 sq. cm.          

Step-by-step explanation:

Area of equilateral triangle = \frac{\sqrt{3}}{4} a^2

Where a is the side of the triangle

We are given that area of equilateral triangle is 121\sqrt{3}

So, 121\sqrt{3}=\frac{\sqrt{3}}{4} a^2

121=\frac{a^2}{4}

484=a^2

22=a

Perimeter of equilateral triangle = 3 \times Side

                                                     = 3 \times 22

                                                     = 66 cm              

Now  the wire which formed triangle is bent in the form of a circle.

Circumference of circle = 2\pi r

So,  66=2\pi r      

 66=2 \times  \frac{22}{7} r            

 66 \times \frac{7}{44}=r            

 6 \times \frac{7}{4}=r              

10.5 cm=r      

Area of circle = \pi r^{2}

                       = \frac{22}{7}(10.5)^{2}        

                       = 346.5 cm^2    

Hence the area enclosed by circle is 346.5 sq. cm.                                    

Similar questions