Math, asked by Ajax111, 1 year ago

A wire has a mass (0.3+/- 0.003) g,radius (0.5 +/- 0.005) mm and length (6 +/- 0.06) cm.What is the maximum percentage error?

Answers

Answered by Deepsbhargav
341
hey friend!!!!!

your answer is "4%"
___________

Explainatioan =>
______

Since density is mass÷volume,

For a cylinder it becomes- mass÷(pi×radius^2×length)

Relative percent errors for-

Mass-0.003÷0.3×100=1%

Radius^2-2×0.005÷0.5×100=2%

Length-0.06÷0.6×100=1%

THE UNITS CANCEL THEMSELVES FROM THE NUMERATOR AND DENOMINATOR.

therefore,

maximum percentage error in density-1%+2%+1%=4%

so, the answer is 4%


I think my answer is capable to clear your confusion..

Ajax111: Thnx mate
Deepsbhargav: wlcm bro
Answered by talasilavijaya
0

Answer:

The maximum percentage error in density is 4%.

Step-by-step explanation:

Given mass of wire, m=0.3g

          error in measurement of mass, \Delta m =\pm  0.003 g

          radius of wire, r=0.5mm

          error in measurement of radius, \Delta r =\pm  0.005 mm

          length of wire, l=6cm

          error in measurement of length, \Delta l =\pm  0.06 cm

Since mass, radius and length, assuming that the maximum percentage error in density is to be calculated,

Volume of the wire is given by, V=\pi r^{2} l

and density is the ratio of mass to the volume, \rho =\frac{m}{V}

The percentage error in density is

               \frac{\Delta \rho}{\rho} \times 100=\frac{\Delta m}{m} \times 100+2\frac{\Delta r}{r} \times 100+\frac{\Delta l}{l} \times 100

       \implies \frac{\Delta \rho}{\rho} \times 100=\Big(\frac{\Delta m}{m} +2\frac{\Delta r}{r} +\frac{\Delta l}{l}  \Big)\times 100\\

                              =\Big(\frac{0.003}{0.3} +2\frac{0.005}{0.5} +\frac{0.06}{6}  \Big)\times 100\\

                              =(0.01 +2\times 0.01 +0.01\Big)\times 100\\

                              =(0.04  )\times 100\\

                              =4\%

Therefore, the maximum percentage error in density is 4%.

Similar questions