Physics, asked by aboorvaa, 7 months ago

a wire has diameter of 0.7mm and resistivity of 1.6×10^8 ohm meter. what will be the length of this wire to make its resistance 14 ohm​

Answers

Answered by BrainlyIAS
17

Given :

a wire has diameter of 0.7 mm and resistivity of 1.6×10⁸ Ω meter

To Find :

Length of the wire to make its resistance 14 Ω

Solution :

\bigstar\ \; \sf \pink{R=\dfrac{\rho\ l}{A}}

where ,

  • R denotes resistance
  • ρ denotes resistivity
  • l denotes length
  • A denotes area

_____________________

Given ,

Diameter = 0.7 mm

⇒ Radius , r = 0.35 × 10⁻³ m

So , Area of the wire is ( Circular ) ,

⇒ A = πr²

⇒ A = π ( 0.35 × 10⁻³ )²

A = 0.1225π × 10⁻⁶ m²

Resistivity , ρ = 1.6 × 10⁻⁸ Ω-m

Resistance , R = 14 Ω

\\ \to \sf R=\dfrac{\rho\ l}{A}\\

\\ \to \sf 14=\dfrac{1.6 \times 10^{-8} \times l}{0.1225\times \pi \times 10^{-6}}\\

\\ \to \sf 14=\dfrac{1.6\times 10^{-2}\times l}{0.1225\times \pi}

\\ \to \sf 5.3851=1.6\times 10^{-2}\times l\\

\\ \to \sf 3.365 = 10^{-2}\times l\\

\\ \to \sf 336.5 \cong l\\

\\ \sf \orange{\leadsto l=336.5\ m}\ \; \bigstar\\

Answered by rocky200216
35

\bf{\gray{\underbrace{\blue{GIVEN:-}}}}

  • A wire has,

  1. \bf\red{Diameter} = 0.7 mm = 0.0007 m
  2. \bf\red{Resistivity} = 1.6 × \bf{10^{-8}} Ω.m

\bf{\gray{\underbrace{\blue{TO\:FIND:-}}}}

  • The length of the wire to make it's Resistance "14 Ω" .

\bf{\gray{\underbrace{\blue{SOLUTION:-}}}}

We have know that,

\orange\bigstar\:\bf{\gray{\overbrace{\underbrace{\purple{R\:=\:\rho\:\dfrac{l}{A}\:}}}}}----(1)

Where,

  • \bf\red{R} = Resistance

  • \bf\red{\rho} = Resistivity

  • \bf\red{l} = Length of the wire

  • \bf\red{A} = Area of the wire

According to the question,

  • R = 14 Ω

  • \bf{\rho} = 1.6 × \bf{10^{-8}} Ω.m

Now, to find the area of the wire we can use the following formula;

\green\bigstar\:\bf{\gray{\overbrace{\underbrace{\purple{Area\:=\:\pi\:r^2\:}}}}}

Where,

  • \bf{\pi} = 3.14

  • r = radius = diameter/2 = 0.0007/2 = \bf\pink{3.5\times{10^{-4}}\:m}\\

\rm{:\implies\:Area(A)\:=\:3.14\times{(3.5\times{10^{-4}})^2}\:}\\

\bf\blue{:\implies\:Area(A)\:=\:38.465\times{10^{-8}}\:m^2}\\

Now, putting all these values in the equation (1);

\bf\orange{:\implies\:l\:=\:\dfrac{RA}{\rho}\:}\\

\rm{:\implies\:l\:=\:\dfrac{14\times{38.465\times{10^{-8}}}}{1.6\times{10^{-8}}}\:}\\

\rm{:\implies\:l\:=\:\dfrac{538.51\times{10^{-8}}}{1.6\times{10^{-8}}}\:}\\

\bf\green{:\implies\:l\:=\:336.56\:m}\\

\red\therefore The length of the wire to make it's Resistance "14 Ω" is \bf\red{336.56\:m} .

Similar questions