Science, asked by diya5192, 1 year ago

A wire having a mass of 0.45 gm posses a resistance of 0.014 if the restivity of material of wire is 1.78×10^-7 ohm m calculate its length and radius
Given, that the density bif material of the wire is 8.93 × 10^3 kg m^-3

Please give me correct answer ☺️

Answers

Answered by Anonymous
5

\boxed{ Answer = 2.84 mm }

Explanation:

Here, m = 0.45 kg , R = 0.014 \Omega,

  \rho = 1.78 \times  {10}^{ - 8} ohm \: m \: \\  and \: density \: of \: the \: material \: of \: wire \:d = 8.93 \times  {10}^{3}kg \: m^{ - 3}    \\ let \: l \: be \: the \: length \: and \: r \: the \: radius \: of \: wire \:

Now, R = \rho \frac{l}{A}  \:  =  \rho\frac{l}{\pi {r}^{2}}  \:  \:  \:  \:  \: .....(i) \\ Also ,\: the \: mass \: of \: wire, m= volume \times density \\ or \:  \: \:  m = \pi {r}^{2}l \times d \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  .....(ii) \\ Multiplying \: equation \: (i) \: and \: (ii), \: we \: have \\ R \times M = \rho \frac{l}{\pi {r}^{2}}  \times  \pi{r}^{2}l  \times d \\ or \:  \: l =   \sqrt{ \frac{R \: m}{ \rho \: d} }  =    \sqrt{ \frac{0.014 \times 0.45}{1.78 \times  {10}^{ - 7} \times 8.93 \times 10^{3}  } }  = 1.99 \: m \\ from \: equation \: (ii) \: we \: have \:  \\ r =  \sqrt{ \frac{m}{\pi \: ld} }  =  \sqrt{ \frac{0.45}{\pi \times 1.99 \times 8.93 \times  {10}^{3} } }  = 2.84 \times  {10}^{ - 3} m = 2.84 \:mm

Answered by Anonymous
3

Answer:

 \large \bold\red{ Length= 0.2 \: m}\\\\\large \bold\red{ Radius = 2.8 \times  {10}^{ - 4}\:m }

Explanation:

Given,

A wire having,

Mass,

  •  \bold{m = 0.45\: gm = 4.5\times{10}^{-4}\:Kg}

Resistance,

  • \bold{R= 0.014\:\Omega = 1.4\times{10}^{-2}\:\Omega}

Density,

  • \bold{d=8.93\times{10}^{3}\:Kg{m}^{-3}}

To find :

  • Radius = Let denoted by (r)
  • Length = Let demoted by (l)
  • Area of cross section = Let denoted by (a)
  • Volume = Let denoted by (v)

Now,

We know that,

 \large \boxed{\bold\purple{v = \pi {r}^{2} l}}

And,

 \large \boxed{\bold\purple{v =  \frac{m}{d} }}

Therefore,

We get,

 =  >  \frac{m}{d}  = \pi {r}^{2} l

Substituting the respective values,

We get,

 =  >  \frac{4.5 \times  {10}^{ - 4} }{8.93 \times  {10}^{3} }  =  \frac{22}{7}  \times  {r}^{2} l \\  \\  =  >  {r}^{2} l = 0.5 \times  {10}^{ - 4 - 3}  \times  \frac{7}{22}  \\  \\  =  >  {r}^{2} l = 5 \times  {10}^{ - 8}  \times 0.32 \\  \\  =  >  {r}^{2} l = 1.6 \times  {10}^{ - 8}

Also,

We know that,

 \large \boxed{\bold\purple{R =  \rho \frac{l}{a} }}

Therefore,

Substituting the values,

We get,

 =  > 1.4 \times  {10}^{ - 2}  = 1.78 \times  {10}^{ - 7}  \times  \frac{l}{\pi {r}^{2} }  \\  \\  =  >  \frac{ {l}^{2} }{ {r}^{2}l }  =   \cancel\frac{14 \times 22}{178 \times 7}  \times   \frac{ {10}^{ - 3} }{ {10}^{ - 9} }  \\  \\  =  >  \frac{ {l}^{2} }{ {r}^{2}l }  =  \frac{22}{89}  \times  {10}^{6}

Further,

We get,

 =  >  \frac{ {l}^{2} }{1.6 \times  {10}^{ - 8} }  = 2.5 \times  {10}^{6}  \\  \\  =  >  {l}^{2}  = 2.5 \times 1.6 \times  {10}^{6 - 8}  \\  \\  =  >  {l}^{2}  = 25 \times 16 \times  {10}^{  - 2 - 2}  \\  \\  =  >  {l}^{2}  =  {(5 \times 4 \times  {10}^{ - 2}) }^{2}  \\  \\  =  > l = 20 \times  {10}^{ - 2}  \\  \\  =  > \large \bold{ l = 0.2 \: m}

Therefore,

Substituting the values ,

We get,

 =  >  {r}^{2}  =  \frac{1.6 \times  {10}^{ - 8} }{0.2}  \\  \\  =  >  {r}^{2}  = 8 \times  {10}^{ - 8}  \\  \\  =  > r = 2 \sqrt{2}  \times  {10}^{ - 4}  \\  \\  =  > r = 2 \times 1.4 \times  {10}^{ - 4}  \\  \\  =  > \large \bold{ r = 2.8 \times  {10}^{ - 4}\:m }

Similar questions