Math, asked by rajbarakumar123, 1 year ago

A wire in the form of a cirle of radius 3.5 m is bent in the form of a rectangle whose length and breath are in the ratio of 6:5 what is the area of the rectangle

Answers

Answered by smriti2004
3
❣️❣️Hey Matt ❣️❣️

❣️❣️Here is your answer ❣️❣️


wire length is in shape of circle
radius of circle = 3.5m
circumference = 2πr
= 2× 22/7 ×3.5
= 2× 22× .5
= 22 metre

whose length and breadth of rectangle are in ratio of 6:5
length = 6x
breath = 5x

Same wire form in rectangle
so,
perimeter of rectangle= circumference of circle
2(l+b ) =22
6x+5x = 22/2
11x =11
x=1
length = 6x = 6 m
breath= 5x = 5 m
Area of rectangle = l×b
=6× 5
= 30 square metre

❣️❣️Hope it helps you ❣️❣️

smriti2004: remember some days before he is saying ab8 me and now rishu
smriti2004: check his profile his new gf is rishu
smriti2004: he is a true play boy
smriti2004: u can check rishu profile where he talk to her in one question of ridhu
Answered by SANDHIVA1974
2

Answer:

\large\underline{\underline{\maltese{\red{\pmb{\sf{\: Given :-}}}}}}

➬ Radius of wire = 3.5 m

➬ Ratios of dimensions of rectangle = 6:5

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\color{darkblue}{\pmb{\sf{\: To \: Find :-}}}}}}

➬ Area of rectangle formed = ?

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\large\underline{\underline{\maltese{\orange{\pmb{\sf{\: Solution :-}}}}}}

❒ Formula Used :

Circumference of circle :

\large{\blue{\bigstar{\pink{\underbrace{\underline{\red{\sf{ Circumference{\small_{(Circle)}} = 2πr}}}}}}}}

Perimeter of Rectangle :

\large{\blue{\bigstar{\pink{\underbrace{\underline{\red{\sf{ Perimeter{\small_{(Rectangle) }} = 2(Length + Breadth) }}}}}}}}

Area of Rectangle :

\large{\blue{\bigstar{\pink{\underbrace{\underline{\red{\sf{ Area{\small_{(Rectangle)}} = Length \times Breadth}}}}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

❒ Let :

➳ Length = 6x

➳ Breadth = 5x

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

❒ Finding the value of x :

\blue{:\longmapsto{\sf{Circumference{\small_{(Circle) }} = Perimeter{\small_{(Rectangle) }}}}}

\qquad{\rightarrowtail{\sf{ 2πr = 2(Length + Breadth)}}}

\qquad{\rightarrowtail{\sf{ 2 \times \dfrac{22}{7} \times 3.5 = 2(6x + 5x)}}}

\qquad{\rightarrowtail{\sf{  \dfrac{44}{7} \times 3.5 = 2(6x + 5x)}}}

\qquad{\rightarrowtail{\sf{  \dfrac{154}{7}  = 2 \times 11x}}}

\qquad{\rightarrowtail{\sf{  \cancel\dfrac{154}{7}  = 2 \times 11x}}}

\qquad{\rightarrowtail{\sf{  22  = 2 \times 11x}}}

\qquad{\rightarrowtail{\sf{  \dfrac{22}{2}  =  11x}}}

\qquad{\rightarrowtail{\sf{  \cancel\dfrac{22}{2}  =  11x}}}

\qquad{\rightarrowtail{\sf{  11 =  11x}}}

\qquad{\rightarrowtail{\sf{  \dfrac{11}{11} = x}}}

\qquad{\rightarrowtail{\sf{  \cancel\dfrac{11}{11} = x}}}

\qquad\large{\red{:\longmapsto{\underline{\overline{\boxed{\green{\sf{ x = 1}}}}}}}}

❒ Dimensions :

\large{\leadsto{\sf{\orange{ Length = 6x = 6 \times 1 = 6 \: m}}}}

\large{\leadsto{\sf{\orange{ Breadth = 6x = 5 \times 1 = 5 \: m}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

❒ Finding the Area :

{:\longmapsto{\sf{ Area = Length \times Breadth}}}

{:\longmapsto{\sf{ \:\:\:\:\: 6 \times 5}}}

\qquad\large{\red{:\longmapsto{\underline{\overline{\boxed{\green{\sf{ Area = 30\:m}}}}}}}}

\qquad{━━━━━━━━━━━━━━━━━━━━━━━━━━}

❒ Therefore :

❝ The area of the rectangle formed is 30 m² .❞

{\green{\underline{▬▬▬▬▬}}{\pink{\underline{▬▬▬▬▬}}{\orange{\underline{▬▬▬▬▬}}{\purple{\underline{▬▬▬▬▬▬}}}}}}

Similar questions