Math, asked by alamamber32, 10 months ago

a wire in the form of rectangle 18.7 cm long and 14.3 wide in reshaped and bent into the form of a circle find the radius of the circle so formed​

Answers

Answered by Anonymous
160

AnswEr :

CONCEPTBEHINDTHIS :

◗ Wire is in the form of Rectangle and, then reshaped into the form of a Circle.

◗ Length of wire won't change ever, that's why Perimeter of Rectangle and, Circumference of the Circle so formed will be Equal.

\rule{100}{2}

Refrence of Image is in the Diagram :

  • Length of Rectangle = 18.7 cm
  • Breadth of Rectangle = 14.3 cm

\setlength{\unitlength}{1.5cm}\begin{picture}(8,2)\thicklines\put(7.7,3){\large{A}}\put(7,2){\mathsf{\large{14.3 cm}}}\put(7.7,1){\large{B}}\put(9.2,0.7){\matsf{\large{18.7 cm}}}\put(11.1,1){\large{C}}\put(8,1){\line(1,0){3}}\put(8,1){\line(0,2){2}}\put(11,1){\line(0,3){2}}\put(8,3){\line(3,0){3}}\put(11.1,3){\large{D}}\end{picture}

Perimeter of the Rectangle :

\longrightarrow \sf Perimeter = 2(Length + Breadth) \\ \\\longrightarrow \sf Perimeter = 2(18.7\:cm + 14.3\:cm) \\ \\\longrightarrow \sf Perimeter = 2 \times 33\:cm \\ \\\longrightarrow  \green{\sf Perimeter = 66 \:cm}

\rule{200}{1}

Circumference of the Circle so formed :

\implies \sf Circumference = 2\pi r \\ \\\implies \sf Perimeter = 2\pi r \\ \\\implies \sf 66 \:cm = 2 \times  \dfrac{22}{7} \times r \\ \\\implies \sf \cancel\dfrac{66 \:cm \times 7}{2 \times 22} = r \\ \\\implies \boxed{\red{\sf Radius = 10.5 \:cm}}

Radius of Circle so formed is 10.5 cm

\rule{200}{2}

S H O R T C U TT R I C K :

Once you got to know the Perimeter i.e. Circumference for the Circle. we can simply find Radius from this following table :

\begin{tabular}{|c |c | c|}\cline{1-3}Radius & Circumference & Area \\\cline{1-3}3.5 & 22 & 38.5 \\7 & 44 &154\\10.5 & 66&346.5 \\14 &88&616\cline{1-2}\cline{1-3}\end{tabular}

The Circle whose Circumference is 66 cm, Radius will be 10.5 cm.

Radius of Circle so formed is 10.5 cm

Answered by Anonymous
70

❏ Question:-

A wire in the form of rectangle 18.7 cm long and 14.3 wide in reshaped and bent into the form of a circle find the radius of the circle so formed.

❏ Solution:-

Given

length (l)=18.7 cm

breadth (b)=14.3 cm

To find

Radius of the circular ring or wire=?

•Ans:-

\therefore Perimeter of the rectangular wire is

=2×(length+breadth)

=2×(18.7+14.3) cm

=(2×33) cm.

=66 cm

Now, according the question the wire is reshaped in the form of a circle,

Let, the radius of the circular wire (reshaped) is

= r cm.

\therefore Perimeter of the circular wire

=2πr cm

\therefore According to the given condition,

\sf\longrightarrow perimeter of the rectangular wire = perimeter of the circular wire.

\sf\longrightarrow 2 \pi r=66

\sf\longrightarrow 2 \times\frac{22}{7}\times r=66

\sf\longrightarrow r=66\times\frac{7}{22\times2}

\sf\longrightarrow r=\cancel{66}\times\frac{7}{\cancel{22}\times2}

\sf\longrightarrow r=\frac{7\times\cancel3}{\cancel2}

\sf\longrightarrow r=(7\times1.5)\:\:cm

\sf\longrightarrow \boxed{\large{\red{r=10.5 \:\:cm}}}

\bf\therefore Radius of the circle= 10.5 cm.

━━━━━━━━━━━━━━━━━━━━━━━

Useful Formulas:-

✦CIRCLE✦

❚ For a Circle of diameter r ,

(1)Area is given by,

\sf\longrightarrow \boxed{Area=\pi r{}^{2}}

(2) Circumference is given by,

\sf\longrightarrow\boxed{ Circumference=2\pi r=\pi d}

✦RECTANGLE✦

For a rectangle of length l and breadth b,

\sf\longrightarrow \boxed{Area=length\times breadth}

\sf\longrightarrow \boxed{Perimeter=2\times(length+Breadth)}

\sf\longrightarrow \boxed{Diagonal=\sqrt{length{}^{2}+Breadth{}^{2}}}

✦SQUARE✦

For a square of side a ,

\sf\longrightarrow \boxed{Area=Side{}^{2}}

\sf\longrightarrow \boxed{Perimeter=4\times side}

\sf\longrightarrow \boxed{Diagonal=\sqrt{2}\times side}

✦TRIANGLE✦

Triangle of sides a, b and c

\sf\longrightarrow \boxed{Perimeter=a+b+c}

\sf\longrightarrow \boxed{S=\frac{a+b+c}{2}}

[Where, S= Half of Perimeter]

\sf\longrightarrow \boxed{Area=\sqrt{S(S-a)(S-b)(S-c)}}

[ using Heron's Formula]

✰For a Right angled triangle of base b and height h,

\sf\longrightarrow \boxed{Area=\frac{1}{2}\times base\times height}

━━━━━━━━━━━━━━━━━━━━━━━

\underline{ \huge\mathfrak{hope \: this \: helps \: you}}

Similar questions