Math, asked by aryanchaudhary1223, 1 year ago

A wire is bent in the form of a square encloses an area of 121 sq.cm. if the same wire is bent in the form of a circle, then the area it enclosed is equal to

Answers

Answered by jade3
0

Step-by-step explanation:

Given that Area of the square formed by bending a copper wire = 484cm^2.


We know that side of the square = s^2


                                s^2 = 484


                                s = 22cm.



We know that perimeter of the square = 4 * s


                                                                = 4 * 22


                                                                = 88cm.



Therefore the length of the wire = 88cm.


Now,


Given that the same wire is bent into a form of circle.


Circumference of circle = Length of wire


2pir = 88


2 * 22/7 * r = 88


44/7 * r = 88


44 * r = 88 * 7


44 * r = 616


r = 616/44


r = 14.


We know that Area of circle = pir^2

                                               = 22/7 * (14)^2


                                               = 22 * 14 * 2


                                               = 616cm^2.

Therefore the area enclosed by the circle = 616cm^2.




Answered by Anonymous
4

__________

 \large \boxed{ \textsf{given:-}}

 \texttt {\: enclosed area of steel wire when bent to form square = 121 \: sq.cm }

 \large \boxed{ \textsf{to find out:-}}

 \textsf{the area of circle}=??

  \large \boxed{ \rm \: solution:-}

 \rm \: Side  \: a \: square \:  =  \sqrt{121}cm  = 11cm

 \rm \: perimeter \: of \: square = (4   \times 11)cm = 44cm

 \rm \therefore \: length \: of \: the \: wire \:  = 44cm

 \rm \therefore \: circumference \: of \: the \: circle \:  = length \: of \: wire = 44cm

 \textsf{let the radius of the circle be }r \rm \: cm

 \rm \: then \: 2 \pi \: r = 44 \implies \: 2 \times  \large \frac{22}{7}  \small r = 44 \implies \: r = 7

 \rm \therefore \: area \: of \: the \: circle =  \pi \: r {}^{2}

 \large \rm \:  =  \huge( \small \frac{22}{7}  \times 7 \times 7 \huge) \small \:cm {}^{2}  = 154 \: cm {}^{2}

Similar questions