Math, asked by fatimarizvi, 10 months ago

A wire is in the shape of a rectangle . Its length is 40cm and breadth is 22cm . If the same wire is rebent in the shape of square, what will be the measure of each side. Also find which shape encloses more area.

Answers

Answered by Anonymous
98

\huge\underline\mathrm{Question-}

A wire is in the shape of a rectangle . Its length is 40cm and breadth is 22cm . If the same wire is rebent in the shape of square, what will be the measure of each side. Also find which shape encloses more area.

\huge\underline\mathrm{Answer-}

  • Measure of each side is 31 cm.
  • Square encloses more area.

\huge\underline\mathrm{Explanation-}

\begin{lgathered}\bold{Given} \begin{cases}\sf{Length\:of\:rectangle\:=\:40\:cm} \\ \sf{Breadth\:of\:rectangle\:=\:22\:cm}\end{cases}\end{lgathered}

To find :

  • The measure of each side if wire is rebent in the shape of square.

  • Among rectangle and square, which has more are.

Solution :

We know that,

\large{\boxed{\rm{\pink{Perimeter\:of\:rectangle\:=\:2(L+B)}}}}

\begin{lgathered}\bold{Where} \begin{cases}\sf{\red{L\:refers\:to\:length\:of\:rectangle}} \\ \sf{\green{B\:refers\:to\:breadth\:of\:rectangle}}\end{cases}\end{lgathered}

Now putting the values,

\longmapsto \rm{Perimeter\:of\:wire\:=\:2(40+22)}

\longmapsto \rm{Perimeter\:of\:wire\:=\:2(62)}

\longmapsto \rm{Perimeter\:of\:wire\:=124\:cm}

It is given that the rectangular wire is rebent in the shape of square, so perimeter should be equal.

\therefore \rm{Perimeter\:of\:square\:=\:Perimeter\:of\:rectangle}

\longmapsto \rm{4a\:=\:124}

\longmapsto \rm{a\:=\:\cancel{\dfrac{124}{4}}}

\longmapsto \rm{a\:=\:31\:cm}

Therefore, each side of square is 31 cm.

\rule{200}2

★ Area of square = a²

\longmapsto 31 × 31

\longmapsto 961 cm²

★ Area of rectangle = L × B

\longmapsto 40 × 22

\longmapsto 880 cm²

\therefore Square encloses more area.

Answered by Anonymous
68

\bf{\Huge{\boxed{\tt{\purple{ANSWER\::}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}

A wire is in the shape of a rectangle. Its length is 40cm & breadth is 22cm. If the same wire is rebent in the shape of square.

\bf{\Large{\underline{\bf{To\:find\::}}}}

The measure of each side & also which shape enclose more area.

\bf{\Large{\underline{\tt{\green{Explanation\::}}}}}

According to the question;

\bigstar\: Length of the wire will be the same.

\leadsto\sf{\pink{Perimeter\:of\:rectangle\:=\:Perimeter\:of\:square}}

\bf{We\:have}\begin{cases}\sf{The\:length\:of\:rectangle\:(L)=\:40cm}\\ \sf{The\:breadth\:of\:rectangle\:(B)=\:22cm}\\ \sf{Perimeter\:of\:rectangle\:=\:2(Length+breadth)}\\ \sf{Perimeter\:of\:square\:=\:4*side}\end{cases}}

\bigstar\: Let the side of square be R.

Now,

\implies\sf{2(L+B)\:=\:4R}

\implies\sf{2(40cm+22cm)\:=\:4R}

\implies\sf{2(62cm)\:=\:4R}

\implies\sf{124cm\:=\:4R}

\implies\sf{R\:=\:\cancel{\dfrac{124}{4} }cm}

\implies\sf\boxed{\tt{\red{R\:=\:31cm}}}

_________________________________

\bf{\Large{\boxed{\rm{\bigstar\:{Area\:of\:rectangle\:\:\&\:\:square\::}}}}}

\bf{Formula}\begin{cases}\sf{\pink{Area\:of\:rectangle\:=\:(Length*breadth)}}}\\ \sf{\orange{Area\:of\:square\:=\:(Side*Side)}}}\end{cases}}

Rectangle :

\mapsto\sf{Area\:=\:(40*22)cm^{2} }

\mapsto\sf{\purple{Area\:=\:880cm^{2} }}

Square :

\mapsto\sf{Area\:=\:(31*31)cm^{2} }

\mapsto\sf{\purple{Area\:=\:961cm^{2} }}

Thus,

\bf{\Large{\boxed{\sf{The\:area\:of\:square\:is\:greater\:then\:area\:of\:rectangle.}}}}}

Similar questions