Math, asked by harshitsinghks75, 10 months ago

(A wire of length 28 cm is to be cut into two picces. One of the wires
is to be made into a square and the other into a circle. What should be
the length of the two pieces so that the combined area of the square
and the circle is minimum ?
CBSE 1996 give me
answer ​

Answers

Answered by Rohit18Bhadauria
53

Given:

A wire of length 28 cm is cut down into 2 pieces

One of the wires is to be made into a square and the other into a circle

To Find:

The length of the two pieces in the manner that the combined area of the square and the circle is minimum.

Solution:

We know that,

  • Area of circle is given by

\pink{\boxed{\bf{Area\:of\:Circle=\pi r^{2}}}}

where r is the radius of circle

  • Area of square is given by

\purple{\boxed{\bf{Area\:of\:Square=(a)^{2}}}}

where a is length of the side of square

\rule{190}{1}

Let the length of the piece which is drawn in circle be x cm

Then the length of other piece which is drawn in square will be (28-x) cm

Now,

Let the radius of circle be r and length of side of square be a

So, according to question

\rightarrow\rm{Perimeter\:of\:cicle=Length\:of\:first\:piece}

\rightarrow\rm{2\pi r=x}

\rightarrow\rm{r=\dfrac{x}{2\pi}}

Also,

\rightarrow\rm{Perimeter\:of\:square=Length\:of\:second\:piece}

\rightarrow\rm{4a=28-x}

\rightarrow\rm{a=\dfrac{28-x}{4}}

\rule{190}{1}

Now,

Let the area of the circle be A₁

So,

\longrightarrow\rm{A_{1}=\pi r^{2}}

\longrightarrow\rm{A_{1}=\pi\bigg(\dfrac{x}{2\pi}\bigg)^{2}}

\longrightarrow\rm{A_{1}=\dfrac{\pi x^{2}}{4\pi^{2}}}

\longrightarrow\rm{A_{1}=\dfrac{x^{2}}{4\pi}}

Also, let the area of the square be A₂

So,

\longrightarrow\rm{A_{2}=(a)^{2}}

\longrightarrow\rm{A_{2}=\bigg(\dfrac{28-x}{4}\bigg)^{2}}

\longrightarrow\rm{A_{2}=\dfrac{(28-x)^{2}}{16}}

\rule{190}{1}

Now, let the combined area of circle and square be A

So,

\longrightarrow\rm{A=A_{1}+A_{2}}

\longrightarrow\rm{A=\dfrac{x^{2}}{4\pi}+\dfrac{(28-x)^{2}}{16}}

On differentiating A with respect to x, we get

\longrightarrow\rm{\dfrac{dA}{dx}=\dfrac{\cancel{2}x}{\cancel{4}\pi}+\dfrac{\cancel{-2}(28-x)}{\cancel{16}}}

\longrightarrow\rm{\dfrac{dA}{dx}=\dfrac{x}{2\pi}+\dfrac{-(28-x)}{8}}

\longrightarrow\rm{\dfrac{dA}{dx}=\dfrac{x}{2\pi}-\dfrac{28-x}{8}}

To find the minimum value of A, we have to let dA/dx=0

So, let

\longrightarrow\rm{\dfrac{dA}{dx}=0}

\longrightarrow\rm{\dfrac{x}{2\pi}-\dfrac{28-x}{8}=0}

\longrightarrow\rm{\dfrac{x}{\cancel{2}\pi}=\dfrac{28-x}{\cancel{8}}}

\longrightarrow\rm{\dfrac{x}{\pi}=\dfrac{28-x}{4}}

\longrightarrow\rm{4x=\pi(28-x)}

\longrightarrow\rm{4x=28\pi-\pi x}

\longrightarrow\rm{\pi x+4x=28\pi}

\longrightarrow\rm{x(\pi+4)=28\pi}

\longrightarrow\rm{x=\dfrac{28\pi}{\pi+4}}

\rule{190}{1}

Now, again differentiating A with respect to x, we get

\longrightarrow\rm{\dfrac{d^{2}A}{dx^{2}}=\dfrac{1}{2\pi}-\dfrac{(-1)}{8}}

\longrightarrow\rm{\dfrac{d^{2}A}{dx^{2}}=\dfrac{1}{2\pi}+\dfrac{1}{8}=+ve}

Since, double differentiation of A is positive, so A is minimum for the obtained value of x

\rule{190}{1}

So, the length of two pieces are

\rm\green{Length\:of\:first\:piece=x=\dfrac{28\pi}{\pi+4}}

\rm{Length\:of\:second\:piece=28-x}

\rm{Length\:of\:second\:piece=28-\dfrac{28\pi}{\pi+4}}

\rm{Length\:of\:second\:piece=\dfrac{28\pi+112-28\pi}{\pi+4}}

\rm\green{Length\:of\:second\:piece=\dfrac{112}{\pi+4}}


Anonymous: Awesome!
Answered by shadowsabers03
11

Let one side of the square thus formed be \displaystyle\sf{a} and the radius of the circle formed be \displaystyle\sf{r.}

Here the sum of perimeters of square and circle should be equal to length of wire, 28 cm.

\displaystyle\longrightarrow\sf{4a+2\pi r=28}

\displaystyle\longrightarrow\sf{2\pi r=28-4a}

\displaystyle\longrightarrow\sf{\pi r=14-2a}

\displaystyle\longrightarrow\sf{(\pi r)^2=(14-2a)^2}

\displaystyle\longrightarrow\sf{\pi^2r^2=(14-2a)^2}

\displaystyle\longrightarrow\sf{\pi r^2=\dfrac {(14-2a)^2}{\pi}\quad\quad\dots (1)}

The combined area of square and circle is the sum of their areas.

\displaystyle\longrightarrow\sf{A=a^2+\pi r^2}

From (1),

\displaystyle\longrightarrow\sf{A=a^2+\dfrac {(14-2a)^2}{\pi}}

For combined area to have minimum value, its derivative with respect to \displaystyle\sf{a} should be taken as zero.

\displaystyle\longrightarrow\sf{\dfrac {dA}{da}=0}

\displaystyle\longrightarrow\sf{\dfrac {d}{da}\,\left [a^2+\dfrac {(14-2a)^2}{\pi}\right]=0}

\displaystyle\longrightarrow\sf{2a+\dfrac {2(14-2a)(-2)}{\pi}=0}

\displaystyle\longrightarrow\sf{2a-\dfrac {4(14-2a)}{\pi}=0}

\displaystyle\longrightarrow\sf{2a\pi-4(14-2a)=0}

\displaystyle\longrightarrow\sf{a\pi-2(14-2a)=0}

\displaystyle\longrightarrow\sf{a(\pi+4)-28=0}

\displaystyle\longrightarrow\sf{a=\dfrac {28}{\pi+4}}

\displaystyle\longrightarrow\underline {\underline{\sf{4a=\dfrac {112}{\pi+4}\ cm}}}

Taking \displaystyle\sf{\pi=3.14,}

\displaystyle\longrightarrow\underline {\underline{\sf{4a=15.68\ cm}}}

And,

\displaystyle\longrightarrow\sf{2\pi r=28-4a}

\displaystyle\longrightarrow\sf{2\pi r=28-\dfrac{112}{\pi+4}}

\displaystyle\longrightarrow\underline {\underline {\sf{2\pi r=\dfrac {28\pi}{\pi+4}\ cm}}}

\displaystyle\longrightarrow\underline {\underline {\sf{2\pi r=12.32\ cm}}}

Hence the wire should be cut as \displaystyle\bf{15.68\ cm} for making square and \displaystyle\bf{12.32\ cm} for making square.

Similar questions