Physics, asked by ananyaa30121995V, 9 months ago

A wire of resistance R is cut into 5 equal parts and connected in parallel. If the equivalent resistance of this combination is R', calculate the ratio R/R'​

Answers

Answered by amitkumar44481
31

AnsWer :

25 : 1.

To FinD :

Calculate the ratio R/R'

SolutioN :

Let,

  • Resistance be R.
  • Size of Wire A to B.

☛Condition :

  • When We cutting a wire 5 Equal part its resistance become R/5 and When We connect in parallel combination it become 5/R.
  • We have Formula for parallel combination → 1/R = 1/R1 + 1/R2 + 1/R3 + ..+ 1 /Rn.

★ Diagram.

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\put(0,0){\line(1,0){30}}\put(-3,0){$A$}\put(31,0){$B$}\put(1,-5){$\frac{R}{5}$}\put(6,-5){$\frac{R}{5}$} \put(12,-5){$\frac{R}{5}$}\put(18,-5){$\frac{R}{5}$}\put(24,-5){$\frac{R}{5}$}\end{picture}

★ Let's Find the ratio of R/R'.

\tt \longmapsto\dfrac{1}{R'_Parallel }= \dfrac{5}{R} + \dfrac{5}{R} + \dfrac{5}{R} + \dfrac{5}{R} +\dfrac{5}{R}

\tt \longmapsto \dfrac{1}{R'} = \dfrac{25}{R}

\tt \longmapsto R' = \dfrac{R}{25}

\tt \longmapsto \dfrac{R}{R'} = 25.

Therefore, the ratio of R/ R' is 25 : 1.

Answered by CunningKing
24

GiVeN :-

  • A wire of resistance R is cut into 5 equal parts and connected in parallel.
  • Equivalent resistance of this combination is R'.

To DeTeRmInE :-

The ratio R/R'.

AcKnOwLeDgEmEnT :-

\bullet As the wire is cut into 5 equal parts, so the resistance of each part becomes R/5.

\bullet For connections in parallel,

\sf{\dfrac{1}{R_{Equivalent}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+...+\dfrac{1}{R_4}     }

SoLuTiOn :-

Putting the values :-

\sf{\dfrac{1}{R_{Equivalent}}=\dfrac{1}{R_1}+\dfrac{1}{R_2}+\dfrac{1}{R_3}+...+\dfrac{1}{R_4}     }

\displaystyle{\sf{\longmapsto \frac{1}{R'} =\frac{1}{R/5}+\frac{1}{R/5}+\frac{1}{R/5}+\frac{1}{R/5}+\frac{1}{R/5}     }}\\\\\displaystyle{\sf{\longmapsto \frac{1}{R'}=\frac{5}{R}+\frac{5}{R}  +\frac{5}{R} +\frac{5}{R} +\frac{5}{R}  }}\\\\\displaystyle{\sf{\longmapsto \frac{1}{R'}=\frac{25}{R}  }}\\\\\displaystyle{\sf{\longmapsto R'=\frac{R}{25} }}

\rule{120}2

Now,

\displaystyle{\sf{\frac{R}{R'}=\frac{R}{\frac{R}{25} }  }}\\\\\\\displaystyle{\sf{\longmapsto \frac{R}{R'}=R \times \frac{25}{R}   }}\\\\\\\boxed{\displaystyle{\sf{\longmapsto \frac{R}{R'}=\frac{25}{1}  }}}

Hence, the ratio of R/R' is 25 : 1.

Similar questions