Math, asked by experts90, 8 months ago

A wire, when bent in the form of a square, encloses an area of 484 cm². If the same wire is bent to form a circle, find the area of the circle.
please answer with prosedure properly​

Answers

Answered by Sauron
13

Answer:

The area of the circle is 616 cm²

Step-by-step explanation:

Area of square = side × side

Side² = 484

⇒ Side² = \sqrt{484}

⇒ Side = 22 cm

★ Find the perimeter of square

The perimeter of square = 4 × side

⇒ 4 × 22

⇒ 88 cm

Therefore,

Length of wire = 88 cm

Circumference of the circle = 2 π r

★Find the radius of the circle

Let,

The radius of the circle = r

So,

⇒ 2 π r = 88

⇒ 2 × 22 / 7 × r = 88

⇒ 44 / 7 × r = 88

⇒ 44 r = 88 × 7

⇒ 44r = 616

⇒ r = 616 / 44

r = 14

Now,

Find the area of circle

The area of circle = π r²

⇒ 22 / 7 × 14 × 14

⇒ 22 / 7 × 196

⇒ 4312 / 7

⇒ 616

Therefore,

The area of the circle is 616 cm²

Answered by Anonymous
7

{ \bf{ \underline{ \underline{ \red{Solution}}}}}

{ \bf{Side \: of \: square \:  =  \sqrt{area}}}

 =  \sqrt{484}

 = 22cm

{ \bf{ We \: know \: that }}

{ \bf{Perimeter \: of \: square = 4 \times side}}

 = 4 \times 22

 { \mathtt{ \pink{ \underline{ \underline{88}}}}}

So, perimeter of the square is 88cm

__________________________

✒Radius of circle =2πr

✒2πr= 88

2 \times  \frac{22}{7}  \times r = 88

r =  \frac{616}{44}

{ \mathtt{ \pink { \underline{ \underline{14}}}}}

So radius of the circle is 14

__________________________

Now

✒Area of circle =

{ \bf{ Area \: of \: circle = π {r}^{2}}}

 \frac{22}{7}  \times  {14}^{2}

{ \mathtt{ \green{ \boxed{616}}}}

So, Area of circle is 616cm^2

____________________________________________________

Similar questions