Physics, asked by prithvikumar2775, 2 months ago

A wodden cylinder of length 14 cm has a diameter 8 cm what is the volume of cylinder​

Answers

Answered by tirupathireddy289
0

Answer:

V≈703.72cm³

d Diameter

8

cm

h Height

14

cm

Answered by ItzBrainlyBeast
6

\maltese\LARGE\textsf{\underline{ GiVeN :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Height of the cylinder ( h ) = 14 cm}

\qquad\tt{:}\longrightarrow\large\textsf{Diameter of the cylinder ( d ) = 8cm}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ To FiNd :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\large\textsf{Volume of the cylinder = ?}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ FoRmUla :-}}

\large\textsf{                                                               }

\qquad\tt{:}\longrightarrow\boxed{\large\textsf\textcolor{purple}{${\large\textsf\textcolor{purple}{Volume}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{πr²h}$}}

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ SoLuTioN :-}}

\large\textsf{                                                               }

↦ We know that :-

\qquad\tt{:}\longrightarrow\large \sf \: r \:  \:  =  \:  \:   \frac{d}{2}  \\  \\\qquad\tt{:}\longrightarrow\large \sf r \:  \:  \:  =  \:  \:  \frac{8}{2}  \\  \\  \\  \therefore\large \sf \boxed{\sf\:  \: r \:  \:  \:  =  \:  \:  \: 4 \:  \: cm }\\  \\  \\

 \qquad\tt{:}\longrightarrow\large\sf \: volume \:  \:  \:  \: of \:  \:  \:  \: the \:  \:  \:  \: cylinder \:  \:  \:  =  \:  \:  \: \pi {r}^{2} h \\  \\  \\  \qquad\tt{:}\longrightarrow\large  \sf\:  \:  \:  \frac{22}{ \cancel7}   \:  \:  \times \:  \: 4 \:  \: \times  \:  \:  4\:  \:  \times  \:  \:  \cancel{14} \\  \\  \\ \qquad\tt{:}\longrightarrow\large \sf  \:  \: 22 \:  \:  \times 4 \:  \:  \times  \:  \: 4 \:  \:  \times  \:  \: 2 \\  \\  \\ \qquad\tt{:}\longrightarrow\large  \sf =  \boxed{ \sf \color{red}704\:  \:  \:  {cm}^{3} }

\large\textsf{                                                               }

\maltese\LARGE\textsf{\underline{ MoRe fOrMuLaS :-}}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2h ( l + b )}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{2 ( lb + bh + hl )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cuboid \; )}} = \large\textsf{l×b×h}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{L.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{4×l²}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{6 × l²}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cube \; )}} = \large\textsf{l²}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{2 × πrh}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{2πr × ( r + h )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cylinder \; )}} = \large\textsf{πr²h}$}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{C.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\textsf{πrl}$}

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Cone \; )}} = \large\textsf{πr × ( r + l )}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Cone \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{1}}{\large\textsf{3}}$}\large\textsf{× πr²h}

\large\textsf{                                                               }

\large\textsf{${\large\textsf{T.S.A.}}_{\large\textsf{( \; Sphere \; )}} = \large\textsf{4πr²}$}

\large\textsf{${\large\textsf{Volume}}_{\large\textsf{( \; Sphere \; )}} $} \large\textsf{ =$\cfrac{\large\textsf{4}}{\large\textsf{3}}$}\large\textsf{× πr³}

\large\textsf{                                                               }

Similar questions