Math, asked by shivanimaske4153, 19 days ago

A woman’s store sells the following categories of clothing for the following prices:
Blouse: Ghc14 each
Skirt: Ghc16 each
Dress: Ghc25 each
Pantyhose: 2 pairs for Ghc3
Socks: Ghc7
A lady goes to the store on a day when the store has a 20% off sale on all skirts. If Yaa buys 2 skirts, 1 dress, and 4 pairs of pantyhose, how much money does lady have to pay?

Answers

Answered by vanthangpuii21
0

Answer:

zjgsjgdkgdhddtdkgjgsjgsjgsbdbdhhdhdhdhdhdjjdjs

Answered by AnkitaSahni
0

Given: Cost of blouse = GHC 14

           Cost of skirt = GHC 16

           Cost of dress = GHC 25

           Cost of pantyhose = GHC 3 for 2 pairs

           Cost of socks = GHC 7

To Find: Total cost of 2 skirts, 1 dress and 4 pairs of pantyhose when there is 20% off on the price of skirts.

Solution:

  • In this question, we will simply find out the final cost of the lady's purchases by adding their price.
  • In the case of skirts, first we will find cost after reducing 20% of initial cost.

                 Initial cost of skirt = GHC 16

                 Sale on skirts = 20%

                  ⇒ 20% of 16 = \frac{20}{100} × 16

                 ⇒ GHC 3.2

∴ Final cost of skirts = 16 - 3.2 =  GHC 12.8              

So cost of 2 skirts = 12.8 × 2 = GHC 25.6             (1)

  • Cost of 1 dress = GHC 25                            (2)
  • Cost of 2 pairs of pantyhose = GHC 3

              ∴ Cost of 4 pairs of pantyhose = \frac{3}{2} × 4    (applying unitary method)

                 Final cost of pantyhose = GHC 6            (3)

∴ Final cost of all purchases = (1) + (2) + (3)

                                               ⇒ 25.6 + 25 + 6

                                               ⇒GHC 56.6

Hence the lady will have to pay GHC 56.6.

Similar questions