Physics, asked by pkbarwad, 8 months ago

A wooden beam 6 m long, simply supported at its ends, is carrying appoint load of 7.8 KN at its centre. The cross-section of the beam is 150 mm wide and 240 mm deep. if E for the beam is 6 x 103 N/m2 ,Find the deflection at the centre.

Answers

Answered by shadowsabers03
0

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\multiput(0,0)(0,1){2}{\line(1,0){60}}\multiput(0,0)(60,0){2}{\line(0,1){1}}\multiput(0,5)(60,0){2}{\line(0,-1){60}}\multiput(0,5)(0,-2){31}{\qbezier(0,0)(-0.5,-0.5)(-1,-1)}\multiput(60,5)(0,-2){31}{\qbezier(0,0)(0.5,-0.5)(1,-1)}\put(30,1){\line(0,-1){1}}\multiput(30,0)(0,-2){5}{\line(0,-1){1}}\multiput(30,-9)(0,-1){2}{\line(-3,1){30}}\multiput(30,-9)(0,-1){2}{\line(3,1){30}}\put(30,-9){\line(0,-1){11}}\put(29,3){\sf{L}}\put(28,4){\vector(-1,0){28}}\put(32,4){\vector(1,0){28}}\put(27.5,-25){\framebox(5,5)}\put(30,-25){\vector(0,-1){10}}\put(31.2,-5){\sf{d}}\qbezier(30,-6)(27.5,-6)(27,-8)\put(26,-5.5){$\theta$}\put(29,-39){\sf{F}}\scriptsize\multiput(8,-11)(34,0){2}{\text{$\sf{\dfrac{L+\Delta L}{2}}$}}\put(29,-1){\framebox(1,1)}\end{picture}

From the fig., the depression at the center of the beam is given by Pythagoras' Theorem as,

\longrightarrow\sf{d=\sqrt{\left(\dfrac{L+\Delta L}{2}\right)^2-\left(\dfrac{L}{2}\right)^2}}

Since \sf{\Delta L} is so small,

\longrightarrow\sf{d=\sqrt{\dfrac{L^2+2L\,\Delta L}{4}-\dfrac{L^2}{4}}}

\longrightarrow\sf{d=\sqrt{\dfrac{L\,\Delta L}{2}}}

\longrightarrow\sf{d^2=\dfrac{L\,\Delta L}{2}}

\longrightarrow\sf{\Delta L=\dfrac{2d^2}{L}\quad\quad\dots(1)}

From the fig., we see that,

\longrightarrow\sf{\cos\theta=\dfrac{2d}{L+\Delta L}}

From (1),

\longrightarrow\sf{\cos\theta=\dfrac{2d}{\left(L+\dfrac{2d^2}{L}\right)}}

We consider \sf{d} to be very small, so that \sf{d^2} can be neglected.

\longrightarrow\sf{\cos\theta=\dfrac{2d}{L}\quad\quad\dots(2)}

\setlength{\unitlength}{1mm}\begin{picture}(5,5)\multiput(0,0)(0,1){2}{\line(1,0){60}}\multiput(0,0)(60,0){2}{\line(0,1){1}}\multiput(0,5)(60,0){2}{\line(0,-1){60}}\multiput(0,5)(0,-2){31}{\qbezier(0,0)(-0.5,-0.5)(-1,-1)}\multiput(60,5)(0,-2){31}{\qbezier(0,0)(0.5,-0.5)(1,-1)}\put(30,1){\line(0,-1){1}}\multiput(30,0)(0,-2){5}{\line(0,-1){1}}\multiput(30,-9)(0,-1){2}{\line(-3,1){30}}\multiput(30,-9)(0,-1){2}{\line(3,1){30}}\put(30,-9){\line(0,-1){11}}\put(27.5,-25){\framebox(5,5)}\put(30,-25){\vector(0,-1){10}}\put(31.2,-5){\sf{d}}\qbezier(30,-6)(27.5,-6)(27,-8)\put(26,-5.5){$\theta$}\qbezier(0,3)(-2,3.5)(-3,1.5)\qbezier(60,3)(62,3.5)(63,1.5)\put(26,-5.5){$\theta$}\put(29,-39){\sf{F}}\put(29,-1.25){\framebox(1,1)}\put(0,0.5){\vector(-3,1){18}}\put(60,0.5){\vector(3,1){18}}\multiput(0,0.5)(60,0){2}{\vector(0,1){6}}\multiput(-4,3.5)(66.6,0){2}{$\theta$}\multiput(-22,5)(101,0){2}{\sf{A}}\multiput(-6,9)(60,0){2}{$\sf{A\cos\theta}$}\end{picture}

The area of cross section along the deforming force \sf{F} is,

\longrightarrow\sf{A'=2A\cos\theta}

From (2),

\longrightarrow\sf{A'=\dfrac{4Ad}{L}}

The elasticity of the beam is given by,

\longrightarrow\sf{E=\dfrac{FL}{A'\,\Delta L}}

Substituting values for \sf{A'} and \sf{\Delta L,}

\longrightarrow\sf{E=\dfrac{FL}{\left(\dfrac{4Ad}{L}\cdot\dfrac{2d^2}{L}\right)}}

\longrightarrow\sf{E=\dfrac{FL^3}{8Ad^3}}

Hence the depression at the center is given by,

\longrightarrow\sf{d^3=\dfrac{FL^3}{8AE}}

\longrightarrow\underline{\underline{\sf{d=\dfrac{L}{2}\left[\dfrac{F}{AE}\right]^{\frac{1}{3}}}}}

According to the question,

  • \sf{L=6\ m}

  • \sf{F=7.8\times10^{3}\ N}

  • \sf{E=6\times10^{3}\ N\,m^{-2}}

Area of cross section of the beam is,

\longrightarrow\sf{A=150\times10^{-3}\times240\times10^{-3}\ m^2}

\longrightarrow\sf{A=3.6\times10^{-2}\ m^2}

Hence the depression is,

\longrightarrow\sf{d=\dfrac{L}{2}\left[\dfrac{F}{AE}\right]^{\frac{1}{3}}}

\longrightarrow\sf{d=\dfrac{6}{2}\left[\dfrac{7.8\times10^{3}}{3.6\times10^{-2}\times6\times10^3}\right]^{\frac{1}{3}}}

\longrightarrow\underline{\underline{\sf{d=9.92\ m}}}

Similar questions