Math, asked by rishirajsoni987, 11 months ago

a wooden box who's value is 1300₹ is fine wood cost is 25₹/m . length of the box is 4m and breath is 3m find its height

Answers

Answered by Anonymous
11

❏ Correct Question:-

@ A wooden box who's value is 1300₹ is fine wood cost is 25₹/m² . length of the box is 4m and breath is 3m find its height

❏ Solution:-

\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(5.6,5.6){$A$}\put(11.1,5.8){$B$}\put(11.08,8.9){$C$}\put(5.46,8.7){$D$}\put(3.55,10.15){$E$}\put(3.55,7.15){$F$}\put(9.14,10.235){$H$}\put(9.14,7.3){$G$}\put(3.3,6.3){$3\:m$}\put(7.75,6.2){$4\:m$}\put(11.1,7.5){$h\:m$}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

Now , according to the question The wooden box is cost 1300 Rs at 25 Rs/m².

Therefore, Total Surface area of the wooden box is , = \dfrac{1300}{25}\:Rs = 52 m².

Now, we know that total surface area of a cuboid is ,

\sf\implies T.S.A.=2(lb+bh+hl)

where,

T.S.A.=Total Surface area .

l = length,

b= breadth,

h = height,

Hence,

\sf\implies 52=2(4\times3+3\times h+h\times4)

\sf\implies \dfrac{\cancel{52}}{\cancel2}=12+3 h+4h

\sf\implies 26-12=3 h+4h

\sf\implies 14=7h

\sf\implies \dfrac{\cancel{14}}{\cancel7}=h

\sf\implies \boxed{\large{\red{h=2\:m}}}

Hence , Height of the Wooden Box was 2 metre.

Answered by Anonymous
3

\huge\underline\mathrm{SOLUTION:-}

AnswEr:

  • The height of a wooden box = 2 m.

Given:

  • A wooden box who's value is 1300₹ is fine wood cost is 25₹/m .
  • Length of the wooden box is 4m.
  • Breath of wooden the box is 3m.

Need To Find:

  • Find the height of a wooden box = ?

ExPlanation:

\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(5.6,5.6){$A$}\put(11.1,5.8){$B$}\put(11.08,8.9){$C$}\put(5.46,8.7){$D$}\put(3.55,10.15){$E$}\put(3.55,7.15){$F$}\put(9.14,10.235){$H$}\put(9.14,7.3){$G$}\put(3.3,6.3){$3\:m$}\put(7.75,6.2){$4\:m$}\put(11.1,7.5){$h\:m$}\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

According to the given question:

  • A wooden box is cost Rs. 1,300 at 25 RS/m². [Given]

Hence:

  • T.S.A of wooden box = 1300/25 RS = 52m².

Now, Formula used here:

  • T.S.A = 2(lb + bh + hl)

Putting the values according to the given formula:

➠ 52 = 2(4 × 3 + 3 × h + h × 4

➠ 52/4 = 12 + 3h + 4h

➠ 26 - 12 = 3h + 4h

➠ 14/7 = h

{\underline{\boxed{\sf{Height = 2}}}}

ThereFore:

  • The Height of a wooden box = 2 metre.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Additional Information:

Here,

  • L is used for Length.
  • B is used for Breadth.
  • H is used for Height.
  • T.S.A = 2(lb + bh + hl)
  • T.S.A is used for Total surface of area.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Similar questions