Math, asked by shivkumar215953, 10 months ago

A works half of B's ​​3/4 of the time. If A and B work together in 18 days, then B alone will work in how many days?​

Answers

Answered by Anonymous
20

 \huge \mathbb \red{ANSWER}

 \bf{ \boxed{ \underline{ \blue{ \tt{x = 30 \: }}}}}

___________________________________

 \sf \huge \underline \pink{Question}

A works half of B's 3/4 of the time. If A and B work together in 18 days, then B alone will work in how many days?

_____________________________________

 \sf \ \underline \pink{step \: by \: step \: explanation}

 \rm \blue{➷ \: let \: b \: work \: complete \: be \: x}

 \rm \green{➷ \: time \: taken \: by \: a \: will \: be \:  \frac{1}{2} \: will \: be \:  \frac{3}{4}}

 \rm \green{ =  \frac{3x}{4}}

 \bf \red{time  \: taken \: by \: a \: will \: be \:  \frac{3x}{4} \times 2 =  \frac{3x}{2}}

_____________________________________

 \bf{ \underline{ \underline{ \pink{Now \: }}}}

 \tt \orange{➷ \: A \: day \: work =  \frac{2}{3x}}

 \tt \purple{➷ \: B \: work \:  =  \frac{1}{x}}

 \tt \underline{according \: to \: question}

if a and b work together in 18 days

 \tt \underline{➷ \: so \: a \: and \: b \: work \: be \:  \frac{1}{18}}

____________________________________

According to question..

 \bf \blue{➷ \:  \frac{2}{3x} +  \frac{1}{x} =  \frac{1}{18}}

 \bf \red{➷ \: x = 30}

so,

B days take 30 days to work

 \bf{ \boxed{ \underline{ \pink{ \tt{x = 30 \: }}}}}

Similar questions