Math, asked by sarojkumarpradhan124, 2 months ago

a^x^2.b^x^3 derivative of the function​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

The given function is

\rm :\longmapsto\: {a}^{ {x}^{2} } \:  {b}^{ {x}^{3} }

Let assume that,

\rm :\longmapsto\:y =  {a}^{ {x}^{2} } \:  {b}^{ {x}^{3} }

On differentiating both sides, w, r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx}(  {a}^{ {x}^{2} } \:  {b}^{ {x}^{3} })

We know,

\underbrace{ \boxed{ \bf \: \dfrac{d}{dx}u.v = u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u}}

So, using this we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  { {a}^{x} }^{2} \dfrac{d}{dx} { {b}^{x} }^{3}  +  {b}^{ {x}^{3} }\dfrac{d}{dx} {a}^{ {x}^{2} }

We know,

\underbrace{ \boxed{ \bf \: \dfrac{d}{dx} {a}^{x} =  {a}^{x}loga}}

\rm :\longmapsto\:\dfrac{dy}{dx} =  { {a}^{x} }^{2}{ {b}^{x} }^{3}logb \dfrac{d}{dx}  {x}^{3}   +  {b}^{ {x}^{3} }{ {a}^{x} }^{2}loga\dfrac{d}{dx} {x}^{2}

We know,

\underbrace{ \boxed{ \bf \: \dfrac{d}{dx} {x}^{n} =  {nx}^{n - 1}}}

\rm :\longmapsto\:\dfrac{dy}{dx} =  { {a}^{x} }^{2}{ {b}^{x} }^{3}logb({3x}^{2}) +  {b}^{ {x}^{3} }{ {a}^{x} }^{2}loga(2x)

\rm :\longmapsto\:\dfrac{dy}{dx} =  { {a}^{x} }^{2}{ {b}^{x} }^{3}\bigg( {3x}^{2}logb \:  +  \: 2xloga \bigg)

Alternative Method :-

\rm :\longmapsto\:y =  {a}^{ {x}^{2} } \:  {b}^{ {x}^{3} }

Taking log on both sides, we get

\rm :\longmapsto\:logy = log( {a}^{{x}^{2}} \:{b}^{ {x}^{3}})

We know,

\underbrace{ \boxed{ \bf \:  log(xy) = logx + logy}}

So using this, we get

\rm :\longmapsto\:logy = log{ {a}^{x} }^{2} + log{ {b}^{x} }^{3}

We know,

\underbrace{ \boxed{ \bf \:  log( {x}^{y} )  = y log(x)}}

Using this, we get

\rm :\longmapsto\:logy =  {x}^{2}loga +  {x}^{3}logb

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logy =\dfrac{d}{dx}  {x}^{2}loga + \dfrac{d}{dx} {x}^{3}logb

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{d}{dx}y =loga\dfrac{d}{dx}  {x}^{2}+logb \dfrac{d}{dx} {x}^{3}

\rm :\longmapsto\:\dfrac{1}{y}\dfrac{dy}{dx} =loga(2x) + logb( {3x}^{2} )

\rm :\longmapsto\:\dfrac{dy}{dx} = y(2xloga +  {3x}^{2}logb)

\rm :\longmapsto\:\dfrac{dy}{dx} =  { {a}^{x} }^{2}{ {b}^{x} }^{3}\bigg( {3x}^{2}logb \:  +  \: 2xloga \bigg)

Similar questions