Math, asked by tvfaisal3896, 1 year ago

a
∫ x/2+x⁸ dx ,Evaluate it.
-a

Answers

Answered by amitnrw
5

Answer:

2a⁹/9

Step-by-step explanation:

a

∫ x/2+x⁸ dx

-a

on integrating wrt x we get

a

∫  (x²/4) +x⁹/9

-a

= a²/4 + a⁹/9 - (-a)²/4 - (-a)⁹/9

= a²/4 + a⁹/9  - a²/4 + a⁹/9

= 2a⁹/9

Answered by pulakmath007
12

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO EVALUATE

\displaystyle \sf{ \int\limits_{- a}^{a}  \frac{x}{2 +  {x}^{8} }   \: \, dx }

FORMULA TO BE IMPLEMENTED

1. A function is said to be odd function if f(-x) = - f(x)

2. If f(x) is a odd function then

\displaystyle \sf{ \int\limits_{- a}^{a}  f(x)   \: \, dx } = 0

EVALUATION

Here

\displaystyle \sf{f(x) =  \:  \frac{x}{2 +  {x}^{8} }    }

So

\displaystyle \sf{f( - x) =  \:  \frac{ - x}{2 +  {( - x )\: }^{8} }    }

 \implies \: \displaystyle \sf{f( - x) =  \:  \frac{ - x}{2 +  {x}^{8} }    }

 \implies \: \displaystyle \sf{f( - x) =  \:  -  f(x)   }

Hence f(x) is a odd function

Hence by the above mentioned formula of Definite Integral we get

\displaystyle \sf{ \int\limits_{- a}^{a}  f(x)   \: \, dx } = 0

Hence

\displaystyle \sf{ \int\limits_{- a}^{a}  \frac{x}{2 +  {x}^{8} }   \: \, dx } = 0

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

Use Rolles Theorem to find a real number in the interval (0,3) Where the derivative of the function f(x)=x(x-3)^2 Vanish

https://brainly.in/question/22736169

Similar questions