A={x:2x+1,x€n,x<=5},B={x:x is a composite number,x<=12},then show that (AUB)-(A intersection B)=(A-B)U(B-A)
Answers
Answered by
26
Proof:
Step 1. Finding the sets
A = { x : 2x + 1, x ∈ lN, x ≤ 5 }
= { 3, 5, 7, 9, 11 }
B = { x : x is a composite number, x ≤ 12 }
= { 4, 6, 8, 9, 10, 12 }
A U B = { x : x ∈ A or x ∈ B }
= { 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }
A ∩ B = { x : x ∈ A and x ∈ B }
= { 9 }
A - B = { x : x ∈ A but x ∉ B }
= { 3, 4, 5, 6, 7, 8, 10, 11, 12 }
B - A = { x : x ∈ B but x ∉ A }
= { }
Step 2. Proving the statement
L.H.S. = (A U B) - (A ∩ B)
= { x : x ∈ (A U B) but x ∉ (A ∩ B) }
= { 3, 4, 5, 6, 7, 8, 10, 11, 12 }
R.H.S. = (A - B) U (B - A)
= { x : x ∈ (A - B) or ∈ (B - A) }
= { 3, 4, 5, 6, 7, 8, 10, 11, 12 }
So L.H.S. = R.H.S.
Hence, proved.
Similar questions