Math, asked by jawaharreddy, 1 year ago

a^x=(a/k)^y=k^m, then 1/x - 1/y =​

Attachments:

Answers

Answered by Anonymous
6

Answer:

1/m

Step-by-step explanation:

a^x = k^m  =>  a^(xy) = k^(my)

(a/k)^y = k^m  =>  a^y = k^(m+y)  =>  a^(xy) = k^(mx+xy)

Therefore

k^(my) = k^(mx+xy)

=> my = mx + xy

=> m(y - x) = xy

=> m(1/x - 1/y) = 1

=> 1/x - 1/y = 1/m


jawaharreddy: thank q
Anonymous: You're very welcome. Glad to have helped! Have a good day.
Answered by Anonymous
2

good \: morning \:  \\  \\  \\  \\ let \:  \:  \:  \:  \\  \\ a {}^{x}  = (a \div k) {}^{y}  = k {}^{m}  = z \\  \\  \\  \\  =  >  \\  \\  \\ a {}^{x}  = z \:  \:  \:  \:  \:  \:  \:  \: (a \div k) {}^{y}  = z \\  \\  \\ and \:  \:  \:  \:  \: k {}^{m}  = z \\  \\  \\  \\  =  >  \\  \\  \\ a = z {}^{(1 \div x)}  \:  \:  \:  \:  \: (a \div k) {}^{}  = z {}^{1 \div y}  \\  \\ and \:  \:  \:  \:  \:  \: k = z {}^{1 \div m}  \\  \\  \\  \\  =  >  \\  \\  \\ z {}^{(1 \div y)}  = z {}^{(1 \div x)}  \times z {}^{( - 1 \div m)}  \\  \\  \\  \\  =  >  \\  \\ (1 \div y) = (1 \div x) - (1 \div m) \\  \\  \\  =  >  \\  \\  \\  \\ (1 \div x) - (1 \div y) =( 1 \div m)


jawaharreddy: thank q
Similar questions