Math, asked by Nargisnasrin7, 9 months ago

√a+x-√a-x by √a+x+√a-x

Answers

Answered by rkuntal7686
0

Answer:

 \frac{ \sqrt{a + x}  -  \sqrt{a - x} }{ \sqrt{a + x} +  \sqrt{a - x}  }

rationalise \: the \: dinominator

 =  \frac{ \sqrt{a + x}  -  \sqrt{a - x} }{ \sqrt{a + x} +  \sqrt{a - x}  }  \times  \frac{ \sqrt{a + x} -  \sqrt{a + x} }{ \sqrt{a + x}  -  \sqrt{a - x} }

 =  \frac{ {( \sqrt{a + x} -  \sqrt{a -x}  )}^{2} }{ {( \sqrt{a + x} )}^{2} - ({ \sqrt{a - x} }^{2} ) }

 =  \frac{ {( \sqrt{a + x})}^{2}  - 2. \sqrt{a + x} . \sqrt{a - x} +  {( \sqrt{a - x} }^{2})  }{a + x - (a - x)}

 =  \frac{( { \sqrt{a + x} })^{2}  - 2. \sqrt{a + x} . \sqrt{a - x}  +  { \sqrt{(a - x} )}^{2} }{2x}

Similar questions