Math, asked by servesh303214, 9 months ago

a/x - b/y = 0 , ab^2 / x + a^2b/y=(a^2 + b^2)

answer will get 49 points

Answers

Answered by Anonymous
7

Answer:

hope it helps you...........

Attachments:
Answered by Anonymous
84

☺️solution☺️

value \: of \: x \:  = a \: and \: y = b

given \: system \: of \: equation

 \frac{a}{x}  -  \frac{b}{y}  = 0 \: ............equation \: 1

 \frac{ab {}^{2} }{x}  +  \frac{a {}^{2}b }{y}  =  {a}^{2}  +  {b}^{2}  \:...........2

given \: equation \: are \: not \: linear

let \:  \frac{1}{x}  = u \: and \:  \frac{1}{y}  = v

we \: get

au  \:  -  \: bv = 0..............3

 {ab}^{2}u +  {a}^{2}bv =  {a}^{2}   +  {b}^{2}  ..........4

from \: equation \: 3

v =  \frac{bv}{a}

put \: this \: in \: eqn \: 4

 {ab}^{2}  \times  \frac{bv}{a}  +  {a}^{2} bv =  {a}^{2}  +  {b}^{2}

b3v +  {a}^{2} bv =  {a}^{2}  +  {b}^{2}

( {b}^{2}  +  {a}^{2} )bv =  {a}^{2}  +  {b}^{2}

v =  \frac{1}{b}

u = b \times  \frac{1}{b}  =  \frac{1}{a}

so

 \frac{1}{x}  =  \frac{1}{a \: }

then \: x = a \: and \:  \frac{1}{y}  =  \frac{1}{b}

y = b

therefore \: value \: of \: x = a \: \: and \: y = b

.

.

.

..

.

.

.

.

mark \: me \: as \:  \:a \: brainlist \: please

Similar questions