A={x:x is a prime factor of 210}
B={x:x ≤10 and x € N, show that (AUB)-(ANB)=(A-B)U(B-A).
Answers
A U B - A ∩ B = (A - B) U (B - A) Verified
Step-by-step explanation:
A={x:x is a prime factor of 210}
A = { 2 , 3 , 5 , 7 }
B = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 }
A U B = { 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 }
A ∩ B = { 2 , 3 , 5 , 7 }
A U B - A ∩ B = { 1 , 4 , 6 , 8 , 9 , 10 }
A - B = { }
B - A = { 1 , 4 , 6 , 8 , 9 , 10 }
(A - B) U (B - A) = { 1 , 4 , 6 , 8 , 9 , 10 }
A U B - A ∩ B = (A - B) U (B - A)
Learn more
A={x:x=2n+1, n e N, n<6}
https://brainly.in/question/12061610
https://brainly.in/question/453045
Answer:
Given,
A={x:x is a prime factor of 210}
B={x:x ≤10 and x ∈ N }
Roster form of these sets are,
A={2, 3, 5, 7}
B={1, 2, 3, 4, 5, 6, 7, 8,9, 10}
A∪B = all elements of A and B
= {1, 2, 3, 4, 5, 6, 7, 8,9, 10}
= B
A∩B = common elements of A and B
= {2, 3, 5, 7}
= A
Thus,
(AUB)-(A∩B) = elements of AUB which are not in A∩B
= {1, 4, 6, 8, 9, 10}
Also, A - B = {}
B - A = {1, 4, 6, 8, 9, 10}
So,
(A-B)U(B-A) = {1, 4, 6, 8, 9, 10}
Hence, (AUB)-(A∩B)=(A-B)U(B-A).