A={(x,y):x²+y²=25} B={(x,y):x²+9y²=144} then A intersection B value is
Answers
Answered by
1
Step-by-step explanation:
Given : A = (x,y)(x²+y²=25) and B=(x,y)(x²+9y²=144)
To find : A ∩ B
Solution:
x² + y ² = 25
x² + 9y² = 144
=> 8y² = 119
=> y² = 119/8
=> y = ± √ 119/ 2√2
Substitute y² = 119/8
in x² + y ² = 25
=> x² + 119/8 = 25
=> x² = 81/8
=> x = ± 9/2√2
4 Possible points area
( 9/2√2 , √ 119/ 2√2 ) ,
( 9/2√2 , -√ 119/ 2√2 )
( -9/2√2 , √ 119/ 2√2 )
( -9/2√2 , -√ 119/ 2√2 )
A ∩ B = 4
Similar questions
Math,
3 months ago
English,
3 months ago
Hindi,
3 months ago
Biology,
6 months ago
Political Science,
6 months ago