A: x²-4 एक रैखिक समीकरण है। R: 2 बहुपद x²-4 का एक शुन्यक है।
Answers
I dont know how to write but the answer is x + 2 ,
Given : A: x²-4 एक रैखिक समीकरण है।
R: 2 बहुपद x²-4 का एक शुन्यक है।
A - Assertion
R - Reasoning
To Find : Both A and R are true and R is correct explanation of A
Both A and R are true and R is not correct explanation of A
A is true but R is False
A is False but R is True.
Both A and R are false.
Solution:
A: x²-4 एक रैखिक समीकरण है।
FALSE
रैखिक समीकरण Ax + By + C = 0 where A and B , both can not be 0
Here power of x is 2
Hence its Quadratic not linear
=> x²-4 एक रैखिक समीकरण है। is FALSE
R: 2 बहुपद x²-4 का एक शुन्यक है।
x²-4 = 0
=> (x + 2)(x - 2) = 0
=> x= -2 or x = 2
Hence 2 बहुपद x²-4 का एक शुन्यक है।
R: 2 बहुपद x²-4 का एक शुन्यक है। TRUE
A is FALSE , R is TRUE
Learn More:
A pair of linear equations 111 2 2 2 ax by c ax by c + += + += 0, 0 is ...
brainly.in/question/18461075
If ax2+bx+c and bx2+ax+c have a common factor x+1 then show that ...
brainly.in/question/11220575